B. The TOY Machine

Look

OUTPUT

Introduction o Computer Science -+ Sedgewick and Wayne - Copyright © 2007 - http://www.cs.Princeton.EDU/IntroCS

What is TOY?

An imaginary machine similar to:

" Ancient computers.

* Today's microprocessors.

* And practically everything in between |

Why Study TOY?

Machine language programming.

* How do Java programs relate to computer?

* Key to understanding Java references.

e Still situations today where it is really necessary.

multimedia, computer games, embedded devices, scientific computing, MMX, Altivec

Computer architecture.
* How does it work?
* How is a computer put tfogether?

TOY machine. Optimized for simplicity, not cost or performance.

Inside the Box

Switches. Input data and programs. Registers.
» Fastest form of storage.
Lights. View data. Scratch space during computation.

16 16-bit registers.

Memory. * Register O is always O.

 Stores data and programs.
« 256 16-bit "words."
* Special word for stdin / stdout.

Arithmetic-logic unit (ALU). Manipulate
data stored in registers.

Standard input, standard output. Interact
Program counter (PC). with outside world.
e An extra 8-bit register.

* Keeps track of next instruction to
be executed.

Data and Programs Are Encoded in Binary

Each bit consists of two states:
*1orQ; true or false.
» Switch is on or of f; wire has high voltage or low voltage.

Everything stored in a computer is a sequence of bits.
 Data and programs.
» Text, documents, pictures, sounds, movies, executables, ...

NINOILIa M= 77,, = 01001101, = 4D,
DIOC O =79,, = 01001111, = 4F,
JIVUI IU M= 77, = 01001101, = 4D,

How to represent integers?
 Use binary encoding.
e« Ex: 6375,, = 0001100011100111,

s 1e 1320l s e[e s 432 L]0
0 0 0 1 1 0 0 0 1 1 1 0 0 1 1 1

6375,

+212 4211

4096 +2048

Binary Encoding

+27 426 +25

+128 +64 +32

Dec

Bin
0000
0001
0010
0011
0100
0101
0110
0111

Dec

=
O

N I S S
o | s | w | N

+22 421 420

+4 +2 +1

Bin
1000
1001
1010
1011
1100
1101
1110
1111

Hexadecimal Encoding

How to represent integers?

» Use hexadecimal encoding.

* Binary code, four bits at a time.

e Ex: 6375,

s 1e 1320l s e[e s 432 L]0
0 0 0 1 1 0 0 0 1 1 1 0 0 1 1 1

1

1 x 163

4096

=0001100011100111,
= 18E7,,

8

+ 8 x 162

+ 2048

Dec

E

+ 14 x 161

+ 224

Bin
0000
0001
0010
0011
0100
0101
0110
0111

Hex

7

+ 7 x 16°

+

Dec

—

N I S S

O

(@21 BTSN GO R B N

7

Bin
1000
1001
1010
1011
1100
1101
1110
1111

Hex

O

H oM O O Q W o

Machine "Core" Dump

Machine contents at a particular place and time.
* Record of what program has done.
e Completely determines what machine will do.

indices

l Main Memory
Registers pc o/8 1/9 2/a 1/B 3/C 4/D 5/E 6/f

mn 10 0005 0000 0000 0000 0000 0000 0000

1000 0000 0000 0000 / 0000 0000 0000 0000 0000 0000 0000

mmm . 8B01 1CAB 9C02 0000 0000 0000 00O0O
index of next

0000 0000 0000 OOOO instruction

0000 0000 0000 0000 0000 0OOO 0000
0000 0000 0000 0000 0000 0OOO 0000

data 0000 0000 0000 0000 0000 0OOO 0000

program

0000 0000 0000 0000 0000 0000 0000 00OO
0000 0000 0000 0000 0000 0000 0000 00OO
0000 0000 0000 0000 0000 0000 0000 0OOCO

variables

Why do They Call it "Core"?

Selected Core

1/2

Current

P IR 10
T 1/2 Current

http://www.columbia.edu/acis/history/core.html

A Sample Program

A sample program. Adds 0008 + 0005 = 000D.

TOY memory
(program and data) comments

| /

00: 0008 8
01: 0005

D B G

0000 0000 0000

8y

10: 8A00 RA < mem[00]
11: 8ROl RB < mem[01]
12: 1CAB RC <— RA + RB
13: 9C02 mem[02] < RC
14: 0000 halt

Registers Program counter

add. toy

TOY code to compute 0008,, + 0005,

A Sample Program

Program counter. The pc is initially 10, so the machine
inferprets 8A00 as an instruction.

00: 0008 8
01: 0005 5
02: 0000 0

Registers Progfam counter 11: 8BO1 RB < mem[01]
12: 1CAB RC < RA + RB
13: 9C02 mem[02] < RC
14: 0000 halt

0000 0000 0000

index of next
instruction to execute add. toy

Load

Load. [opcode 8]
* Loads the contents of some memory location into a register.
* 8200 means load the contents of memory cell 00 into register a.

00: 0008 8
01: 0005 5

Registers Program counter 11: 8B01 RB < mem[01]
12: 1CAB RC < RA + RB
13: 9C02 mem[02] < RC
14: 0000 halt

add. toy
[sfasfus] o s o efafe]sfz]a]o
1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0
8 16 Al 6 00 16

Load

Load. [opcode 8]
* Loads the contents of some memory location into a register.
* 8801 means load the contents of memory cell 01 into register B.

00: 0008 8
01: 0005 5

ENEIES = 02: 0000 0

0008 0000 00O0O0
10: 8AO00 RA < mem[00]
Registers Program counter _
12: 1CAB RC <— RA + RB
13: 9C02 mem[02] < RC
14: 0000 halt

add. toy
(sl fus] o] ol efafe]sfz]a]o
1 0 0 0 1 0 1 1 0 0 0 0 0 0 0 1
8 16 B 16 01 16

Add

Add. [opcode 1]
» Add contents of two registers and store sum in a third.
* 1CAB means add the contents of registers » and B and put the result into

register C.

00: 0008 8
01: 0005 5

ENEIES = 02: 0000 0

0008 0005 0000
10: 8A00 RA < mem[00]

Registers Program counter 11: 8B01 RB < mem‘ 01‘

13: 9C02 mem[02] < RC
14: 0000 halt

add. toy

EIRIR R R DR RN
0 0 0 1 1 1 0 0 1 0 1 0 1 0 1 1

116 Cl6 Al6 B16

Store

Store. [opcode 9]
 Stores the contents of some register into a memory cell.
* 9C02 means store the contents of register c info memory cell 02.

00: 0008 8
01: 0005 5

ESEIES - 02: 0000 0

0008 0005 000D
10: 8A00 RA < mem[00]

Registers Program counter 11: 8B01 RB < mem[01]

12'| lfﬁ Ri<—RA+RB

14: 0000 halt

add. toy
(sl fuszfufw] o s o efafe]sfz]a]o
1 0 0 1 1 1 0 0 0 0 0 0 0 0 1 0
9 16 C 16 02 16

Halt

Halt. [opcode O]
» Stop the machine.

00: 0008 8
01: 0005 5

ENEIES = 02: 000>

0008 0005 000D
10: 8A00 RA < mem[00]

Registers Program counter 11: 8B01 RB < mem[01]
12: 1CAB RC <~ RA + RB

add. toy

TOY code to compute 0008,, + 0005,

Same Program, Different Data

Program. Sequence of instructions.

Instruction. 10,11, 12, 13, and 14 (executed when pc points fo it).

Data. 00, 01, and 02 (used and changed by instructions).
data

00: 1CAB 7339
01l: 1CAB 7339
02: 0000 0

Registers Program counter 11: 8B01 RB < mem[01]
12: 1CAB RC <~ RA + RB

13: /9C02 mem[02] < RC
14:/ 0000 halt

0000 0000 0000

add. toy

instruction
1CAB,, =1 x 163

+ 12 x 162 TOY code to compute 7339,, + 7339,
+ 10 x 16!
+ 11 x 169

= 4096 + 3072 + 160 + 11 = 7339,

Load

Load. [opcode 8]
* Loads the contents of some memory location into a register.
* 8200 means load the contents of memory cell 00 into register a.

00: 1CAB 7339
01l: 1CAB 7339

Registers Program counter 11: 8B01 RB < mem[01]
12: 1CAB RC < RA + RB
13: 9C02 mem[02] < RC
14: 0000 halt

add. toy
[sfasfus] o s o efafe]sfz]a]o
1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0
8 16 Al 6 00 16

Load

Load. [opcode 8]
* Loads the contents of some memory location into a register.
* 8801 means load the contents of memory cell 01 into register B.

00: 1CAB 7339
01l: 1CAB 7339

ENEIES = 02: 0000 0

1cAB 0000 0000
10: 8AO00 RA < mem[00]
Registers Program counter _
12: 1CAB RC <— RA + RB
13: 9C02 mem[02] < RC
14: 0000 halt

add. toy
(sl fus] o] ol efafe]sfz]a]o
1 0 0 0 1 0 1 1 0 0 0 0 0 0 0 1
8 16 B 16 01 16

Add

Add. [opcode 1]
» Add contents of two registers and store sum in a third.
* 1CAB means add the contents of registers » and B and put the result into

register C.

00: 1CAB 7339
01l: 1CAB 7339

ENEIES = 02: 0000 0

1CAB 1CAB 0000
10: 8A00 RA < mem[00]

Registers Program counter 11: 8B01 RB < mem‘ 01‘

13: 9C02 mem[02] < RC
14: 0000 halt

add. toy

EIRIR R R DR RN
0 0 0 1 1 1 0 0 1 0 1 0 1 0 1 1

116 Cl6 Al6 B16

Store

Store. [opcode 9]
 Stores the contents of some register into a memory cell.
* 9C02 means store the contents of register c into memory cell 02.

00: 1CAB 7339
01l: 1CAB 7339

ESEIES - 02: 0000 0

1CAB 1CAB 3956
10: 8A00 RA < mem[00]

Registers Program counter 11: 8B01 RB < mem[01]

12'| lﬁ Ri<—RA+RB

14: 0000 halt

add. toy
(sl fuszfufw] o s o efafe]sfz]a]o
1 0 0 1 1 1 0 0 0 0 0 0 0 0 1 0
9 16 C 16 02 16

Halt

Halt. [opcode O]
» Stop the machine.

00: 1CAB 7339
01l: 1CAB 7339

ENEIES = 02: 3956 14678

1CAB 1CAB 3956
10: 8A00 RA < mem[00]

Registers Program counter 11: 8B01 RB < mem[01]
12: 1CAB RC <~ RA + RB

M

add. toy

Program and Data

Instructions

Program. Sequence of 16-bit integers,

- halt

interpreted one way. — add
subtract

Data. Sequence of 16-bit integers, and

interpreted another way. xor
shift left
Program counter (pc). Holds memory address shift right

of the "next instruction" and determines load address

which integers get interpreted as instructions. — load
- store
load indirect

16 instruction types. Changes contents of

registers, memory, and pc in specified, store indirect

well-defined ways. branch zero
branch positive
Jump register

jump and link

TQY Instruction Set Architecture

TOY instruction set architecture (ISA).
 Interface that specifies behavior of machine.
* 16 register, 256 words of main memory, 16-bit words.
e 16 instructions.

Each instruction consists of 16 bits.
* Bits 12-15 encode one of 16 instruction types or opcodes.
* Bits 8-11 encode destination register d.
* Bits 0-7 encode:
[Format 1] source registers s and t

[Format 2] 8-bit memory address or constant

[[wfsefefmwf o] oo el a]alalz]s
1 0 1 1 1 0 1 0 0 0 0 0 0 1 0 0

Interfacing with the TOY Machine

To enter a program or data:

* Set 8 memory address switches.

» Set 16 data switches.

* Press Load: data written into addressed word of memory.

To view the results of a program:

* Set 8 memory address switches.
* Press Look: contents of addressed word appears in lights.

Run

OUTPUT

Interfacing with the TOY Machine

To execute the program:

= Set 8 memory address switches to address of first instruction.
* Press Look to set pc to first instruction.

" Press Run to repeat fetch-execute cycle until halt opcode.

Fetch-execute cycle.

= Fetch: geft instruction from memory.
" Execute: update pc, move data to or from
memory and registers, perform calculations.

W

Load Look Step Run Enter Stop Reset

" INWAIT @ READY
PC STDOUT

~ o maan

INSTR
®
DATA

Flow Control

Flow control.
* To harness the power of TOY, need loops and conditionals.
* Manipulate pc to control program flow.

Branch if zero. [opcode C]
 Changes pc depending on whether value of some register is zero.
» Used to implement: for, while, if-else.

Branch if positive. [opcode D]
* Changes pc depending on whether value of some register is positive.
» Used to implement: for, while, if-else.

An Example: Multiplication
Multiply. Given integers a and b, compute c = a x b,

TOY multiplication. No direct support in TOY hardware.

Brute-force multiplication algorithm: Gl =
e Initialize c to 0. int b = 9;
) int ¢ = 0;
e Add b to ¢, a times. _
while (a '= 0) {
c =c¢c + b;
a=a-1;

brute force multiply in Java

Issues ignored. Slow, overflow, negative numbers.

Multiply

multiply. toy

Step-By-Step Trace

multiply. toy

An Efficient Multiplication Algorithm

Inefficient multiply.
* Brute force multiplication algorithm loops a times.
= Tn worst case, 65,535 additions!

"Grade-school" multiplication.
* Always 16 additions to multiply 16-bit integers.

1234 101 1
Decimal “ 415102 Binary * 110 1
2468 101 1
1234 0000

6170 101 1

1234 101 1
01865808 10001111

Binary Multiplication

Grade school binary multiplication algorithm to 101 1 a
compute c = ax b. *110 1 b

= Initialize ¢ = 0. 1011 a<<0

" Loop over i bits of b.

00O00O
-1 .= 1 = ith hi f
if b; = 0, do nothing ¢m b =iMbitofb 101 1 g << D
-if b; = 1, shift a left i bits and 101 1 a<<3
add to ¢ 10001111 C

Implement with built-in TOY shift instructions.

int ¢ = 0;
for (int i = 15; i >= 0; i--)
if (((b >> i) & 1) == 1) @ Db =i"bitofb

c=c¢c + (a < 1i);

Shift Left

Shift left. (opcode 5)

* Move bits to the left, padding with zeros as needed.
« 1234, << 7,, = 1A00,,

Shift right. (opcode 6)
* Move bits to the right, padding with sign bit as needed.

Shift Right

« 1234, >> 7,. = 0024,
discard
sign bit e AN
0 1 0 0 1 0 0
116 216 316 416
pad with 0’s >>
A
- N
0 0 0 0 0 0 0 0 0
016 016 216 416

Bitwise AND

<

Logical AND. (opcode B)

" Logic operations are BITWISE.
« 0024, & 0001, = 0000,

H B O O
H O KB O
H o o o

Shifting and Masking

Shift and mask: get the 7™ bit of 1234.
= Compute 1234,, >> 7., = 0024,,.

= Compute 0024,, & 1, = 0.

OA:
OB:
OC:
OD:
OE:
OF:

10:
11:
12:
13:
14:

loop

15:
16:
17:
branch | 18:

@ ca1s
<:::i-1A:

0003
0009
0000
0000
0001
0010

8AOA
8BOB
8COD
810E
820F

2221
53A2
64B2
3441

1CC3

‘ D215

1C:

9cocC

Binary Multiplication

@& inputs
@ output

& constants

ok OO VW

=

mem|[OA]
mem|[0B]
mem|[0D]
mem|[0E]
mem|[O0F]

SEZEE
(RN

R2 - RI1

RA << R2

RB >> R2

R4 R4 & R1

if (R4 == 0) goto 1B
RC < RC + R3

if (R2 > 0) goto 15

(|

mem[0C] < RC

a

b

c =0
always 1

i=16 @ 16 bit words

do {

i--

a <1

b > i

b, = ith bit of b

if b; is 1

add a << 1 to sum

} while (i > 0);

multiply-fast.toy

Format 1

I T

H H U Q W P © 0 4 o0 00~ W N R o

halt

add

subtract

and

xor

shift left
shift right
load addr
load

store

load indirect
store indirect
branch zero
branch positive
Jump register
jump and link

opcode

opcode

N N NN B B NMNDNDNR KB R B R R

TOY Reference Card
(15[14[13[12/11]10] 9] 8| 7] 6] 5[4 3][2][1]0]

dest d

dest d

exit (0)

R[d]
R[d]
R[d]
R[d]
R[d]
R[d]
R[d]
R[d]

mem[addr] < R[d]

R[d]

<

<

P—

P—

P—

-

P—

R[s]
R[s]
R[s]
R[s]
R[s]
R[s]
addr

source s source t

addr

+ R[t]
- R[t]
& R[t]
A R[t]
<< R[t]
>> R[t]

< mem[addr]

< mem[R[t]]

Register O always O.
Loads from mem [FF] from stdin.
Stores to mem[FF] to stdout.

mem[R[t]] < R[d]

if (R[d]
if (R[d] > 0)

pc < R[d]

R[d]

< pc;

0) pc < addr

pc < addr

pc < addr

Useful TOY "Idioms"

Jump absolute.
= Jump to a fixed memory address.
-branch if zero with destination

-register O is always O 17: C014 pc < 14

Register assignment.
* No instruction that transfers contents of one register into another.
* Pseudo-instruction that simulates assignment:
- add with register O as one of two source registers
17: 1230 R[2] < R[3]

No-op.
* Instruction that does nothing.
* Plays the role of whitespace in C programs.
- numerous other possibilities! LUs 2Oy e

A Little History

Electronic Numerical Integrator and Calculator (ENIAC).

* First widely known general purpose electronic computer. 30 tons

e Conditional jumps, programmable. 30 x50 x8.5f1
17,468 vacuum tubes

* Programming: change switches and cable connections. 300 multiply/sec

» Data: enter numbers using punch cards.

John Mauchly (left) and J. Presper Eckert (right) ENIAC, Ester Gerston (left), Gloria Gordon (right)
http://cs.swau.edu/~durkin/articles/history_computing.html US Army photo: http://ftp.arl.mil/ftp/historic-computers

ENIAC

Basic Characteristics of TOY Machine
TOY is a general-purpose computer.
* Sufficient power to perform ANY computation.

e Limited only by amount of memory and time.

Stored-program computer. [von Neumann memo, 1944]

 Data and program encoded in binary.

John von Neumann

* Data and program stored in SAME memory.
* Can change program without rewiring.

Outgrowth of Alan Turing's work. (stay tuned)

All modern computers are general-purpose computers

and have same (von Neumann) architecture.

Maurice Wilkes (left)
EDSAC (right)

Harvard vs. Princeton

Harvard architecture.
 Separate program and data memories.
* Can't load game from disk (data) and execute (program).

» Used in some microcontrollers.

Von Neumann architecture.
* Program and data stored in same memory.

o

» Used in almost all computers.

‘»_»[)[5 l f::'T;" A JV\‘,[E_‘,E'L
= {svB NVMINE

Q. What's the difference between Harvard and Princeton?

A. At Princeton, data and programs are the same.

