Symbol Table

4 4 Symb0| TGb'@S Symbol fable. Key-value pair abstraction.

* Insert a key with specified value.

* Given a key, search for the corresponding value.

INTRODUCTION TO EX. [DNS lookup]
PrOgramming * Insert URL with specified IP address.

in Java * Given URL, find corresponding IP address.

IP address
WWW.Cs.princeton.edu 128.112.136.11
www.princeton.edu 128.112.128.15
Robert Sedgewick ~ Kevin Wayne www.yale.edu 130.132.143.21
www.harvard.edu 128.103.060.55
WwWW . simpsons.com 209.052.165.60

key value
g in Java: An i Approach - Robert Sedgewick and Kevin Wayne Copyright © 2002-2010 03/30/12 04:53:30 PM
Symbol Table Applications Symbol Table APT

public class *ST<Key extends Comparable<Key>, Value>

Application Key *STQ) create a symbol table

void put(Key key, Value v) putkey-value pairinto the table

phone book look up phone number name phone number
Value get(Key key) return value paired with key, nu11 if key not in table
bank process transaction account number transaction details
boolean contains(Key key) is there a value paired with key?
file share find song to download name of song computer ID Note: Implementations should also implement the Iterable<Key> interface to enable clients to access
file system find file on disk filename location on disk keys in sorted order with foreach loops.
dictionary look up word word definition
web search find relevant documents keyword list of documents
book index find relevant pages keyword list of pages
web cache download filename file contents
genomics find markers DNA string known positions
symbol table T T
DNs find IP address given URL URL IP address stores a set of key value
5 . key-value pairs
reverse DNS find URL given IP address IP address URL
compiler find properties of variable variable name value and type (Gl | a6

routing table route Internet packets destination best route

Symbol Table APT

public class *ST<Key extends Comparable<Key>, Value>

*ST(Q) create a symbol table
void put(Key key, Value v) putkey-value pairinto the table
Value get(Key key) return value paired with key, nu11 if key not in table
boolean contains(Key key) is there a value paired with key?
Note: Impl ions should also impl the Tterable<Key> interface to enable clients to access

keys in sorted order with foreach loops.

Dave 9876

P

put(“Zeke", 1001)

adds key-value pair Zeke 1001

key value

Carl 5665

Symbol Table APT

public class *ST<Key extends Comparable<Key>, Value>

*ST(Q) create a symbol table
void put(Key key, Value v) putkey-value pairinto the table
Value get(Key key) return value paired with key, nu11 if key not in table
boolean contains(Key key) is there a value paired with key?
Note: Impl. ions should also impl the Tterable<Key> interface to enable clients to access

keys in sorted order with foreach loops.

Dave 9876

contains(“Alice") T T
returns true

key value

contains("Kevin")
returns false Carl 5665

Symbol Table APT

public class *ST<Key extends Comparable<Key>, Value>

*STQ create a symbol table
void put(Key key, Value v) putkey-value pairinto the table
Value get(Key key) return value paired with key, nu11 if key not in table
boolean contains(Key key) is there a value paired with key?

Note: Implementations should also implement the Iterable<Key> interface to enable clients to access
keys in sorted order with foreach loops.

Dave 9876

P

get("Alice")

returns 2927 Zeke 1001

key value

Carl 5665

Symbol Table APT

public class *ST<Key extends Comparable<Key>, Value>

*STQ create a symbol table
void put(Key key, Value v) putkey-value pairinto the table
Value get(Key key) return value paired with key, nu11 if key not in table
boolean contains(Key key) is there a value paired with key?

Note: Implementations should also implement the Iterable<Key> interface to enable clients to access
keys in sorted order with foreach loops.

Dave 9876

P

put("Bob", 4444)
changes Bob's value

key value

associative array notation

st['Bob"] = 4444 Carl 5665

is legal in some languages
(nhot Java)

Symbol Table Sample Client

Sample Datasets

Linguistic analysis. Compute word frequencies in a piece of text.

Reference: Wortschatz corpus, Univesitdt Leipzig
http://corpora.informatik.uni-leipzig.de

Symbol Table Client: Frequency Counter

Frequency counter. [e.g., web traffic analysis, linguistic analysis]
= Read in a key.
* If key is in symbol table, increment count by one;
If key is not in symbol table, insert it with count = 1.

Zipf's Law

Linguistic analysis. Compute word frequencies in a piece of text.

Zipf's law. In natural language, frequency of i most common word
is inversely proportional to i.

e.g., most frequent word occurs about twice
as often as second most frequent one

Zipf's Law Zipf's Law
L . Lo . 100000 T
Linguistic analysis. Compute word frequencies in a piece of text. e'”StEm'% at ——
at gat' —_—
ee”%vés'i at
% java Freq < leipziglm.txt | sort -rn 10000 enJII-ZF gat‘ —_—
1160105 the Qro-ng | —
593492 of J -civil-z at —_—
560945 to Anngqag—gg att ——
472819 a
>1000 'le -zf.dat =— 1
A 2 'verne-zf.dat' ——
205531 for g
192296 The o
188971 that 2 100 | . 'ewald-zf.dat! —— |
172223 15 ch-news-zf.dat' ——
148915 said
147024 on
141178 was
i18429 by 10!
Zipf's law. In natural language, frequency of i most common word 1 : ‘
is inversely proportional fo i. 1 10 100 |, nking 1000 10000 100000

e.g., most frequent word occurs about twice
as often as second most frequent one

Symbol Table: Elementary Implementations

Unordered array.
* Put: add key to the end (if not already there).
* Get: scan through all keys to find desired value.

ss B

32 26 47 82 4 20 58 56 14

Ordered array.

= Put: find insertion point, and shift all larger keys right.

= Get: binary search to find desired key.

IEI 4 6 14 20 26 32 47 55 56 58 82 @@
4 = 5 I 2 K O D

Credit: Kumiko Tanaka-Ishii, University of Tokyo

Symbol Table: Implementations Cost Summary

Unordered array. Hopelessly slow for large inputs.

Ordered array. Acceptable if many more searches than inserts;
too slow if many inserts.

Running Time Frequency Count
unordered array N @ 170 sec 4.1hr
ordered array log N @ 58sec 5.8 min 15 min 2.1hr

I ~.]

too slow (N? to build table) doubling test
(quadratic in # of distinct words)

insert 28

Challenge. Make all ops logarithmic.

Binary Search Trees

Reference: Knuth, The Art of Computer Programming

BST Search

successful search
for a node with key the

the isafter it
s0 go to the right

the is before was
s0 go to the left

the

A

success!

unsuccessful search
for a node with key times

the

times is after it
S0 go to the right

=

AN

imes is before was
50 go to the left

times is after the
but the right link is null
so the BST has no node
having that key

Binary Search Trees

Def. A binary search tree is a binary tree in symmetric order.

Binary tree is either: / \

Emp’ry \
A key-value pair and two binary trees.

we suppress values from figures
8 @

node

Symmetric order.
* Keys in left subtree are smaller than parent.
* Keys in right subtree are larger than parent.

smaller keys larger keys

BST Insert
insert times
times is after it

4~ 50 go to the right

was
S times is beforewas
50 go to the left
the
™~ times is after the
so it goes on the right

BST Construction

of
ey
inserted
_
it

times
the

the
best worst

H
S
%
P

the

BST: Skeleton

BST’ AHOW genemc keYS and VOIUCS. requires Key to provide compareTo () method:;
see textbook for details

Binary Search Tree: Java Implementation

To implement: use fwo links per Node.

A Node is comprised of:
= A key.
= Avalue.
= A reference to the left subtree.
= A reference to the right subtree.

root

l
I e N
alm E
S g,

BST: Get

Get. Return val corresponding to given key, or null if no such key.

BST: Put

Put. Associate val with key.
* Search, then insert.
= Concise (but tricky) recursive code.

public void put(Key key, Value val) {
root = put(root, key, val);
}

private Node put(Node x, Key key, Value val) {

if (x == null) return new Node (key, val) ;
int cmp = key.compareTo (x.key) ;
if (cmp < 0) x.left = put(x.left, key, val);

else if (cmp > 0) x.right = put(x.right, key, val);
else x.val = val;
return x;

overwrite old value with new value

BST: Analysis

Running time per put/geft.
* There are many BSTs that correspond to same set of keys.

= Cost is proportional to depth of node.
AN

number of links on path from root to node

/\ \
/\

- R& Pﬁ e '} “

depth =

depth =4

BST Implementation: Practice

Bottom line. Difference between a practical solution and no solution.

Running Time Frequency Count

N

unordered array N 170 sec 41hr - -
ordered array log N N 58sec 5.8 min 15 min 2.1hr

BST: Analysis

Best case. If free is perfectly balanced, depth is at most Ig N.

BST: Analysis

Worst case. If tree is unbalanced, depth can be N.

/ \
/ \
/ — \
\
/ \

the worst

Symbol Table: Implementations Cost Summary

BST. Logarithmic time ops if keys inserted in random order.
Running Time Frequency Count
unordered array N N 170 sec 4.1hr - -
ordered array log N 58sec 5.8 min 15 min 2.1hr

N
95sec 7lsec l4sec 69 sec

1 assumes keys inserted in random order

Q. Can we guarantee logarithmic performance?

BST: Analysis

Average case. If keys are inserted in random order, trees stay ~flat,
and average depth is 2InN.

requires proof
(see COS 226)

the was

Typical BSTs constructed from randomly ordered keys

Red-Black Tree

Red-black tree. A clever BST variant that guarantees depth <2 1g N.

see COS 226

import java.util.TreeMap;
import java.util.Iterator;

Java red-black tree library implementation

public class ST<Key extends Comparable<Key>, Vzlue> implements Iterable<Key> {

private TreeMap<Key, Value> st = new TreeMap<Key, Val>();

public void put(Key key, Value val) {

if (val == null) st.remove (key);

else st.put(key, val);
}
public Value get (Key key) { return st.get(key) ; }
public Value remove (Key key) { return st.remove (key) ; }
public boolean contains (Key key) { return st.containsKey (key) ; }
public Iterator<Key> iterator() { return st.keySet().iterator(); }

Red-Black Tree

Red-black tree. A clever BST variant that guarantees depth <2 1g V.

see COS 226

Running Time Frequency Count

N N

unordered array 170 sec 41hr - -

ordered array log N N 58sec 5.8 min 15 min 2.1hr
BST log N * log N * .95 sec 7.1sec 14 sec 69 sec
red-black log N .95 sec 7.0 sec 14 sec 74 sec

1 assumes keys inserted in random order

Inorder Traversal

Inorder traversal. \
= Recursively visit left subtree. @
= Visit node. /‘\ \

* Recursively visit right subtree. (3) /
S

ok

inorder: at be do go hi if me no of pi we

public inorder () { inorder (root); }

private void inorder (Node x) {
if (x == null) return;
inorder (x.left) ;
StdOut.println(x.key) ;
inorder (x.right) ;

Iteration

Enhanced For Loop

Enhanced for loop. Enable client to iterate over items in a collection.

ST<String, Integer> st = new ST<String, Integer>()

for (String s : st) {
StdOut.println(st.get(s) + " " + s);
}

Enhanced For Loop with BST Symbol Table: Summary

BST. Add following code to support enhanced for loop. Symbol table. Quintessential database lookup data type.

\see COS 226 for details

Choices. Ordered array, unordered array, BST, red-black, hash,
* Different performance characteristics.
= Java libraries: TreeMap, HashMap.

Remark. Better symbol table implementation improves all clients.

Other Types of Trees

O.rher. Types Of Tr.ees Other types of trees.

* Ancestor tree.

root

dad mom

Other Types of Trees

Other types of trees.
* Ancestor tree.
* Parse tree: represents the syntactic structure of a statement,
sentence, or expression.

AN
AN

(10 * 12) + 7

Other Types of Trees

Other types of trees.
* Ancestor tree.

* Parse free.

* Unix file hierarchy.
* Phylogeny tree.

gut bacteria
trees
mushrooms
fish
mammals
birds
dragonflies

beetles

Other Types of Trees

Other types of trees.

/
* Ancestor tree. // \\
* Parse tree.

* Unix file hierarchy. e N ES °

aaclarke cosl26 zrnye

RN
files grades submit
/NS
sequence guitar tsp
_—/
Point. java TSP. java tspl3509. txt

Other Types of Trees

Other types of trees.

* Ancestor tree.

* Parse tree.

* Unix file hierarchy.

* Phylogeny tree.

= GUI containment hierarchy.
* Tournament trees.

nn
In]lienl
[—_—
nn =
Itjlien 1 Nizdirlande 3
—— i = =
Argeptinien 2 ItTIienl Niedrr‘lnnde 3 Spclnien4
Er? s E ull

)

Argentinien 2 Deutschland 5 Frankreich 6 Italien1 Niederlande 3 Polen 7 Spanien 4 USA

Reference: Tobias Lauer

