4.3 Stacks and Queues

INTRODUCTION TO

Programming
In Java

An Interdisciplinary Approach

Robert Sedgewick Kevin Wayne

Introduction to Programming in Java: An Interdisciplinary Approach - Robert Sedgewick and Kevin Wayne - Copyright © 2002-2010 - 03/30/12 04:33:08 PM

Data Types and Data Structures

Data types. Set of values and operations on those values.
" Some are built into the Java language: int, double[], String, ...
= Most are not: Complex, Picture, Stack, Queue, ST, Graph, ...

T

this lecture next lecture

Data structures.
* Represent data or relationships among data.
* Some are built into Java language: arrays.
* Most are not: linked list, circular list, tree, sparse array, graph, ...

T T T

this lecture TSP assignment next lecture

Collections

Fundamental data types.
" Set of operations (add, remove, test if empty) on generic data.
* Intent is clear when we insert.
* Which item do we remove?

Stack. [LIFO = last in first out] «—— this lecture
* Remove the item most recently added.
" Ex: cafeteria trays, Web surfing.

Queue. [FIFO = first in, first out]
* Remove the item least recently added.
* Ex: Hoagie Haven line.

Symbol table. «—— next lecture
" Remove the item with a given key.
* Ex: Phone book.

Stacks

Stack APT

public class *StackOfStrings

*StackOfStrings() create an empty stack
boolean 1isEmpty() is the stack empty?
void push(String item) push a string onto the stack
String pop(Q) pop the stack

: v push
& o

Stack Client Example 1: Reverse

public class Reverse {
public static void main (String[] args) {

StackOfStrings stack = new StackOfStrings() ;

while (!'StdIn.isEmpty()) {
String s = StdIn.readString() ;
stack.push(s) ;

}

while (!'stack.isEmpty()) {
String s = stack.pop() ;
StdOut.println(s) ;

} % more tiny.txt
it was the best of times

% java Reverse < tiny.txt

times times of best the was it

of
best
the

was +«—— stack contents when standard input is empty

it

Stack Client Example 2: Test Client

public static void main (String[] args) {
StackOfStrings stack = new StackOfStrings() ;

while ('!'StdIn.isEmpty()) {
String s = StdIn.readString() ;
if (s.equals("-"))
StdOut.println(stack.pop()) ;
else
stack.push(s) ;

% more test.txt
to be or not to - be - - that - - - 1is

% java StackOfStrings < test.txt
to be not that or be

to
not
or
be «—— stack contents just before first pop operation

to

Stack: Array Implementation

i ; how big to mak ? [stay tuned
Array implementation of a stack. ow big fo make array? [stay funed|]

* Usearray a[] to store N items on stack.
" push() add new item at a[N].
" pop() remove item from a[N-1].

stack and array contents not
—_—

after 4™ push operation
or

be

all to be or not to

public class ArrayStackOfStrings ({
private String[] a;
private int N = 0O; temporary solution: make client provide capacity

public ArrayStackOfStrings(int max) { a = new String[max]; }
public boolean isEmpty () { return (N == 0); }
public void push(String item) { a[N++] = item; }
public String pop() { return a[--N]; }

Array Stack: Test Client Trace

StdIn StdOut N 2Ll
0 1 2 3 4
0

push to 1 to

be 2 to be

or 3 to be or

not 4 to be or not

to 5 to be or not to
pop - to 4 to be or not

be 5 to be or not be

- be 4 to be or not

- not 3 to be or

that 4 to be or that

- that 3 to be or

- or 2 to be

- be 1 to

is 2 to s

Array Stack: Performance

Running fime. Push and pop take constant time.
Memory. Proportional to client-supplied capacity, not number of items.

Problem.
" APT does not take capacity as argument (bad to change APT).
* Client might not know what capacity to use.
* Client might use multiple stacks.

|] N I]]
a0 0 00 [I [
N 2 N 0 [
N 0 0 00 I I
N 2 BB 2 0 N 0 0 B
B O e 000 I N
I | R I] I
I 0 00 [[
N | = I I]
B 0 00 I [
B | 200 . [I
NN I I
I] N I I]

Challenge. Stack where capacity is not known ahead of time.

Linked Lists

Sequential vs. Linked Allocation

Sequential allocation. Put items one after another.
* TOY: consecutive memory cells.
* Java: array of objects.

Linked allocation. Include in each object a link o the next one.
* TOY: link is memory address of next item.

= Java: link is reference to next item.
BO "Alice" (o]0] "Carol"
Bl "Bob" Cl null
B2 "Carol" c2 -
. . . L . B3 - c3 -
Key distinctions. ~_ geti™ item o N ol
" Array: random access, fixed size. B - s —
" Linked list: sequential access, variable size. = = = X
AN
get next item B8 B c8 B
B9 - (¢]°] -
BA = ca "Bob" —
BB - CB Cco
array linked list (C4)

(0)

Linked Lists

Linked list.
" A recursive data structure.
" An item plus a pointer to another linked list (or empty list).

* Unwind recursion: linked list is a sequence of items.
why private?

stay tuned

Node data type. private class Node {
. . private String item;
A reference to a string. Sl eel) (s
" A reference to another Node. }
first
Alice ee— Bob e——— Carol e—— null

item next
special pointer value null
terminates list

Building a Linked List

Node third = new Node() ;
third.item = "Carol";
third.next = null;

Node second
second.item

new Node () ;
"Bob " ;

second.next = third;

Node first

new Node () ;

first.item = "Alice";

first.next = second;

first second third
Alice —» Bob ———» Carol

item

—
first C4 ——F+—
second CA —
third CO
—
——— null

next

(o]0
C1
c2
C3
C4
C5
Cé
C7
C8
Cc9
CA
CB
CcC
CD
CE

CF

Value

"Carol"

null

"Alice"

CA

" Bob "

(o]0

main memory

D ——

List Processing Challenge 1

Q. What does the following code fragment do?

for (Node x = first; x !'= null; x = x.next) {
StdOut.println(x.item) ;
}

>

first

Alice ———— Bob e————— Carol — > null

item next

Stack Push: Linked List Implementation

first
\ best —, the
first second

\ best —_, the

first second

l l

best —_, the

first second

l l

of _____, best —, the

was

was

was

was

it

it

it

it

Node second = first;

first = new Node() ;

first.item "of";
first.next = second;

Stack Pop: Linked List Implementation

first / of
of ___ best — the —, was —, it String item = first.item;
first

ST T T ~

v hY

! of\\« best —_, the —__, was —, it
1

1\

, first = first.next;

garbage-collected

first

\« best —__, the ___, was _—_, it

return item;

Stack: Linked List Implementation

not

or

be

to

Linked List Stack: Test Client Trace

StdIn StdOut

to to
pUSh null
be —_—
be —_ > 1o
null
—
or —
or — > be
null
not not
— > or
be
- 10
p— E
null
to —
to —1_ > not =
— — be
— to
null
not
pop - to — > | or
— be t
0
—
null
be
be — | not
— or/ be
— to
null
not —
- be —1 | or e
— — to
null
- not —
== be
— to
null
that thay] | 5] o_r
— — be
— 10
null
or —
- that — > be
— to
null
- be —
or — > w0

1
o
m
é
I |o|

is

\[*

Stack Data Structures: Tradeoffs

Two data structures to implement stack data type.

Array.
" Every push/pop operation take constant time.
* But.. must fix maximum capacity of stack ahead of time.

Linked list.
* Every push/pop operation takes constant time.
* Memory is proportional fo number of items on stack.
* But.. uses extra space and time to deal with references.

first

not \\
or \

al] to be or not
0 1 2 3 4 5 6 7 8 9

List Processing Challenge 2

Q. What does the following code fragment do?

Node last new Node () ;
last.item StdIn.readString() ;
last.next = null;
Node first = last;
while (!StdIn.isEmpty()) {
last.next = new Node() ;
last = last.next;
last.item = StdIn.readString() ;
last.next = null;

last
first 1

Alice ———— Bob e————— Carol — > null

item next

Parameterized Data Types

Stack: Linked List Implementation

Parameterized Data Types

We just implemented: stackofStrings.

We also want: StackOfInts, StackOfURLs, StackOfVans, ...

Strawman. Implement a separate stack class for each type.
" Rewriting code is tedious and error-prone.

* Maintaining cut-and-pasted code is tedious and error-prone.

Generics

Generics. Parameterize stack by a single type.

"stack of apples” parameterized type

/ /

Stack<Apple> stack = new Stack<Apple>() ;
Apple a = new Apple();

Orange b = new Orange() ;

stack.push(a) ;

stack.push (b) ; // compile-time error
a = stack.pop()

sample client \

can't push an orange onto
a stack of apples

Generic Stack: Linked List Implementation

Autoboxing

Generic stack implementation. Only permits reference types.

Wrapper type.
* Each primitive type has a wrapper reference type.
" Ex: Integer is wrapper type for int.

Autoboxing. Automatic cast from primitive type to wrapper type.
Autounboxing. Automatic cast from wrapper type to primitive type.

Stack<Integer> stack = new Stack<Integer> () ;
stack.push(17) ; // autobox (int -> Integer)
int a = stack.pop() ; // auto-unbox (Integer -> int)

Stack Applications

Real world applications.

Parsing in a compiler.

Java virtual machine.

Undo in a word processor.

Back button in a Web browser.
PostScript language for printers.
Implementing function calls in a compiler.

Compilersl

cccccccccccccccccccccc

J qva Adobe PostScript

Function Calls

How a compiler implements functions.
* Function call: push local environment and return address.
* Return: pop return address and local environment.

gcd (216, 192)

static int ged(int p, int q) {
if (g == 0) return p;

else = () ° O O D > O -
p =216, q=192| } gcd (192, 24)

static int ged(int p, int q) {
if (g == 0) return p;

gcd (24, 0)

p =192, g = 24 }

static int ged(int p, int q) {
if (g == 0) return p;
else return gcd(g, p % q)

P=24, gq=0 }

Recursive function. Function that calls itself.
Note. Can always use an explicit stack o remove recursion.

Arithmetic Expression Evaluation

value stack

Goal. Evaluate infix expressions. operator stack
(1+CC2+3)*(C4*5)))
\ \
operand operator

Two stack algorithm. [E. W. Dijkstra]
* Value: push onto the value stack.
* Operator: push onto the operator stack.
" Left parens: ignore.
* Right parens: pop operator and two values;
push the result of applying that operator
to those values onto the operand stack.

Context. Aninterpreter!

v

20

100

101

(1+(CC2+3)*(C4%5)))

+((2+3)*(4*5)))

(C2+3)*(4*5)))

+3)*(4%5)))

3)*(4*%5)))

)*(4*5)))

*(4*5)))

(4*5)))

*5)))

5)))

D))

))

)

Arithmetic Expression Evaluation

public class Evaluate {
public static void main (String[] args) {
Stack<String> ops = new Stack<String>() ;
Stack<Double> vals = new Stack<Double>() ;
while (!'StdIn.isEmpty()) {
String s = StdIn.readString() ;

if (s.equals (" (")) ;
else if (s.equals("+")) ops.push(s) ;
else if (s.equals("*")) ops.push(s) ;

else if (s.equals(")")) {
String op = ops.pop() ;
if (op.equals("+")) vals.push(vals.pop() + vals.pop())
else if (op.equals("*")) vals.push(vals.pop() * vals.pop()) ;
}

else vals.push (Double.parseDouble(s)) ;

}
StdOut.println(vals.pop()) ;

ava Evaluate

5 3
(14 ((2+3) % (4*5)))
101.0

Correctness

Why correct? When algorithm encounters an operator surrounded by
two values within parentheses, it leaves the result on the value stack.

(1+((2+3) *(4*5)))

So it's as if the original input were:

(1 +(5* (4*5)))

Repeating the argument:

(1 + (5 * 20))
(1 + 100)
101

Extensions. More ops, precedence order, associativity, whitespace.

1+ (2 -3 -4) *5 * sqrt(6*6 + 7*7)

Stack-Based Programming Languages

Observation 1. Remarkably, the 2-stack algorithm computes the same
value if the operator occurs after the two values.

(1 ((23+) (45*) *) +)

Observation 2. All of the parentheses are redundant!

123+ 45 * *x +

Jan Lukasiewicz

Bottom line. Postfix or "reverse Polish" notation.

Applications. Postscript, Forth, calculators, Java virtual machine, ...

Queues

|]

Usawing by McCallister, £ 1977 The New Yorker Magarioe, Inc

Queue APT

public class Queue<Item>

boolean
void
Item

int

enqueue |:>

Queue<Item>()
isEmpty ()
enqueue(Item 1item)
dequeue()

Tength(Q

create an empty queue
is the queue empty?
enqueue an item
dequeue an item

queue length

|:> dequeue

public static void main (String[] args) {
Queue<String> q = new Queue<String>() ;
qg.enqueue ("Vertigo") ;

g.enqueue ("Just Lose It")
g.enqueue ("Pieces of Me") ;
g.enqueue ("Pieces of Me") ;

while(!q.isEmpty())
StdOut.println(q.dequeue()) ;

first

it

Enqueue: Linked List Implementation

» Was

first

it

,» Was

>

first

it

,» Was

v

first

it

» Was

v

v

last
the _____, best
the ____, best
oldlast last
the ____, best of
oldlast last

l l

the __ ,best ________, of

Node oldlast = last;

last = new Node() ;
last.item = "of";
last.next = null;

oldlast.next = last;

Dequeue: Linked List Implementation

first

last
it _» Was »the__ ,best___ , of

String item = first.item;

last
e N 1

, was —,the _____,best______,of first = first.next;

garbage-collected

first last

~__ |

was— ,the________,best_______, of return item;

Queue: Linked List Implementation

Queue Applications

Some applications.
" iTunes playlist.
= Data buffers (iPod, TiVo).
* Asynchronous data transfer (file IO, pipes, sockets).
* Dispensing requests on a shared resource (printer, processor).

Simulations of the real world.
" Guitar string.
* Traffic analysis.
* Waiting times of customers at call center.
* Determining humber of cashiers to have at a supermarket.

Conclusions

Sequential allocation: supports indexing, fixed size.
Linked allocation: variable size, supports sequential access.

Linked structures are a central programming tool.
* Linked lists.
" Binary trees.

