4.1,4.2 Performance and Sorting

INTRODUCTION TO

Programming
In Java

Robert Sedgewick Kevin Wayne

Running Time

“As soon as an Analytic Engine exists, it will necessarily
guide the future course of the science. Whenever any result
is sought by its aid, the question will arise - By what course
of calculation can these results be arrived at by the machine
in the shortest time?” — Charles Babbage

how many times do you
have to turn the crank?

Charles Babbage (1864) Analytic Engine

Algorithmic Successes

N-body Simulation.
 Simulate gravitational interactions among N bodies.
* Brute force: N? steps.

time

! quadratic(N 2)
64T

Calaxies NGC 2207 and I1C 2163

32T

16T

8T

| | | |
size — 1K 2K 4K 8K

number of bodies

Algorithmic Successes

N-body Simulation.
 Simulate gravitational interactions among N bodies.
* Brute force: N? steps.

* Barnes-Hut: N log N steps, enables new research. Andrew Appel

PU '81

time

! quadratic (N 2)

64T
Calaxies NGC 2207 and I1C 2163
32T
16T - . . .
linearithmic (N log N)
8T .
linear
| | | |
size — 1K 2K 4K 8K

number of bodies

Algorithmic Successes

Discrete Fourier transform.
* Break down waveform of N samples into periodic components.
* Applications: DVD, JPEG, MRI, astrophysics, ...

* Brute force: N? steps. Freidrich Gauss
1805

time

! quadratic (N 2)
64T

32T

16T

8T

| | | |
size — 1K 2K 4K 8K

number of samples

Algorithmic Successes

Discrete Fourier transform. "\
* Break down waveform of N samples into periodic components.
* Applications: DVD, JPEG, MRI, astrophysics, ...

* Brute force: NZ steps. Tohn Tukey
1965

* FFT algorithm: N log N steps, enables new technology.

time
! quadratic (N 2)
64T

32T

16T inearithmi
linearithmic (N log N)

8T

linear

| | | |
size — 1K 2K 4K 8K

number of samples

Sorting

Sorting

Sorting problem. Rearrange N items in ascending order.

Applications. Binary search, statistics, databases, data compression,
biocinformatics, computer graphics, scientific computing, (too humerous to
list) ...

Hauser Hanley
Hong Haskell
Hsu Hauser
Hayes - Hayes

Haskell Hong

Hanley Hornet

Hornet Hsu

Insertion Sort

Insertion Sort

Insertion sort.
* Brute-force sorting solution. ——
* Move left-to-right through array.
* Insert each element into final position by
exchanging it with larger elements to its left, one-by-one.

insertion sort is simpler and faster than bubble sort,
so we don't feach bubble sort anymore

a
v 0 1 2 3 4 5 6 7
6 and had him his was you the

the you
4 the was
his the

Inserting a[6] into position by exchanging with larger entries to its left

Insertion Sort

Insertion sort.
* Brute-force sorting solution.

* Move left-to-right through array.

* Exchange next element with larger elements to its left, one-by-one.

Inserting a[1] through a[N-1] into position (insertion sort)

0 1 2 3 4 5 6 7

was had him and you his the but

1 0 had was

2 1 him was

3 0 and had him was

4 4 you

5 3 his was you

6 4 the was you

7 1 but had him his the was you
and but had him his the was you

Insertion Sort: Java Implementation

int N = a.length;
for (int i = 1; i < N; i++)
for (int j =1i; jJ > 0; j--)
if (a[j-1] > a[3])
exch(a, j-1, j)~;

else break;

Insertion Sort: Observation

Observe and tabulate running time for various values of N.

* Data source: N random numbers between O and 1.

* Machine: Apple G5 1.8GHz with 1.56B memory running OS X.
* Timing: Skagen wristwatch.

5,000 6.2 million 0.13 seconds
10,000 25 million 0.43 seconds
20,000 99 million 1.5 seconds
40,000 400 million 5.6 seconds

80,000 1600 million 23 seconds

Insertion Sort: Empirical Analysis

Data analysis. Plot # comparisons vs. input size on log-log scale.

Comparsions (millions)

Input Size

slope
/

Hypothesis. # comparisons grows quadratically with input size ~ N2/ 4.

Insertion Sort: Empirical Analysis

Observation. Number of compares depends on input family.
- Descending: ~ N2/ 2.
- Random: ~ N2/ 4.
- Ascending: ~ N.

Comparsions (millions)

Input Size

Analysis: Empirical vs. Mathematical

Empirical analysis.

* Measure running times, plot, and fit curve.

* Easy to perform experiments.

* Model useful for predicting, but not for explaining.

Mathematical analysis.

* Analyze algorithm to estimate # ops as a function of input size.
* May require advanced mathematics.

* Model useful for predicting and explaining.

Critical difference. Mathematical analysis is independent of a particular
machine or compiler; applies to machines not yet built.

Insertion Sort: Mathematical Analysis

Worst case. [descending]
e Iteration i requires i comparisons.
e Total = (0+1+2+...+N-1) ~ N2/2 compares.

EHEEIEIEIE - - -
i

Average case. [random]
e Tteration i requires i/ 2 comparisons on average.
e Total=(0+1+2+...+N-1)/2 ~ N2/4 compares

i

Insertion Sort: Lesson

Lesson. Supercomputer can't rescue a bad algorithm.

C
Computer omparisons Thousand Million
Per Second

laptop instant 1 day 3 centuries

super 1012 instant 1 second 2 weeks

Moore's Law

Moore's law. Transistor density on a chip doubles every 2 years.

Variants. Memory, disk space, bandwidth, computing power per $.

Moore’s Law

The Fifth Paradigm Logarithmic Plot

o
S
o—
=
@»
=
0]
Q
©
e
o
s
0]
(]
—
o
Q
(2]
c
K=l
b=
o
>
©
©
O

-6
10
Electromechanical Relay Vacuum Tube Transistor Integrated Circuit
1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000
Year

http://en.wikipedia.org/wiki/Moore's law

Moore's Law and Algorithms

Quadratic algorithms do not scale with technology.
* New computer may be 10x as fast.
* But, has 10x as much memory so problem may be 10x bigger.
» With quadratic algorithm, takes 10x as long!

“Software inefficiency can always outpace
Moore's Law. Moore's Law isn't a match

for our bad coding.” — Jaron Lanier

Lesson. Need linear (or linearithmic) algorithm to keep pace with Moore's law.

Announcements
Exam 1 looms.
Written exam Tuesday 3/13 during your lecture time. Room TBD.
Programming exam Tuesday 3/13 or Wednesday 3/14 in your precept.
Review session will be held.

Rooms, rules, details on Exams page of website.

Mergesort

First Draft
of a

Report on the
EDVAC

John von Neumann

Mergesort

Mergesort.
e Divide array into two halves.
* Recursively sort each half.
» Merge two halves to make sorted whole.

input
was had him and you his the but

sort left
and had him was

sort right
but his the you

merge
and but had him his the was you

Mergesort: Example

MERGESORTEXAMPLE

|E/]
|G R

|E G MR

E S|
|o|r

EORS

EEGMORRS

E T|
|ax
AETX

M P|
£ L]
|E L M P|
|A EELMPTX|

AEEEEGLMMOPRIR|STX

Top-down mergesort

Merging

Merging. Combine two pre-sorted lists into a sorted whole.

How to merge efficiently? Use an auxiliary array.

R N T N
and had him was but his the you

0O 4 O and and but

1 4 1 but had but

1 5 2 had had his

2 5 3 him him his

3 5 4 his was his

3 6 5 the was the

3 6 6 was was you

4 7 7 you you

Trace of the merge of the sorted left half with the sorted right half

Merging

Merge.
 Keep track of smallest element in each sorted half.
* Choose smaller of two elements.
* Repeat until done.

Merging

Merge.
 Keep track of smallest element in each sorted half.
* Choose smaller of two elements.
* Repeat until done.

Merging

Merge.
 Keep track of smallest element in each sorted half.
* Choose smaller of two elements.
* Repeat until done.

Merging

Merge.
 Keep track of smallest element in each sorted half.
* Choose smaller of two elements.
* Repeat until done.

Merging

Merge.
 Keep track of smallest element in each sorted half.
* Choose smaller of two elements.
* Repeat until done.

Merging
Merging. Combine two pre-sorted lists into a sorted whole.

How to merge efficiently? Use an auxiliary array.

String[] aux = new String[N];
// Merge into auxiliary array.
int 1 = lo, j = mid;

for (int k = 0; k < N; k++)

{

if (i == mid) aux[k] = a[j++];
else if (j == hi) aux[k] = al[i++];
else if (a[j].compareTo(a[i]) < 0) aux[k] = a[j++];
else aux[k] = a[i++];

}

// Copy back.
for (int k = 0; k < N; k++)
a[lo + k] = aux[k];

Mergesort: Java Implementation

int mid = lo + N/2;
sort(a, lo, mid);
sort(a, mid, hi);

lo mid hi

10 11 12 13 14 15 16 17 18 19

Mergesort: Empirical Analysis

Experimental hypothesis. Number of comparisons ~ 20N.

Input Size

Mergesort: Prediction and Verification
Experimental hypothesis. Number of comparisons =~ 20N.

Prediction. 80 million comparisons for N = 4 million.

Observations

4 million 82.7 million 3.13 sec

Agrees.
4 million 82.7 million 3.25 sec
4 million 82.7 million 3.22 sec
Prediction. 400 million comparisons for N = 20 million.
Observations. » »
20 million 460 million 17.5 sec .
Not quite.

50 million 1216 million 45 9 sec

Mergesort: Mathematical Analysis

Analysis. To mergesort array of size N, mergesort two subarrays
of size N/2, and merge them together using < N comparisons.

N\ .
we assume N is a power of 2
A
T(N) N
T(N/2) T(N/2) 2(N/2)
T(N/4) T(N/4) T(N/4) T(N/4) 4(N/4)
log, N
7(2) 1(2) 7(2) 7(2) 1(2) 1(2) 7(2) 17(2)) N/12(2)

Nlog, N

Mergesort: Mathematical Analysis

Mathematical analysis.

analysis comparisons

worst Nlog, N
average Nlog, N
best 1/2 Nlog, N

Validation. Theory agrees with observations.

10,000 120 thousand 133 thousand

20 million 460 million 485 million

50 million 1,216 million 1,279 million

Mergesort: Lesson

Lesson. Great algorithms can be more powerful than supercomputers.

Comparisons

laptop 3 centuries 3 hours

super 1012 2 weeks instant

N =1 billion

Binary Search

(T T I —
-

N EEE

Twenty Questions

Intuition. Find a hidden integer.

interval size Q A

[I 128 <64? no

0 128
| I 64 <96°? yes
64 128
u— 32 <80°? yes
64 96
— 16 <72 no
64 80
I 8§ <76 no
72 80
™ 4 <78 yes
76 80
Il 2 <77% no
7678

77

Binary Search

Idea:
e Sort the array (stay tuned)
 Play "20 questions” to determine the index associated with a given key.

Ex. Dictionary, phone book, book index, credit card numbers, ...

To |aback

Binary search.

* Examine the middle key.

e If it matches, return its index.
» Otherwise, search either the left or right half. the key mid [macabre

(known value)

is between
a[mid] and a[hi—l]\
the index _— ¢ |query

(unknown value)
is between mid and hi-1

hi-1 |zygote

Binary search in a sorted array (one step)

Binary Search

Binary search. Given a key and sorted array a[], find index i
such that a[i] = key, or report that no such index exisfts.

Invariant. Algorithm maintains a[10] < key =< a[hi-1].

Ex. Binary search for 33.

97

14

hi

Binary Search

Binary search. Given a key and sorted array a[], find index i
such that a[i] = key, or report that no such index exisfts.

Invariant. Algorithm maintains a[10] < key =< a[hi-1].

Ex. Binary search for 33.

6 13 14 25 33 43 51 53 64 72 84 93 95 96 97

1 2 3 4 5 6 7 8 9 10 11 12 13 14

lo mid hi

Binary Search
key, or report that no such index exists.

Binary search. Given a key and sorted array a[], find index i

such that a[i]

Invariant. Algorithm maintains a(lo] < key < a[hi-1].

Ex. Binary search for 33.

(3]
(30}

14 25

13

hi

lo

Binary Search
key, or report that no such index exists.

Binary search. Given a key and sorted array a[], find index i

such that a[i]

Invariant. Algorithm maintains a(lo] < key < a[hi-1].

Ex. Binary search for 33.

(3]
(30}

14 25

13

hi

mid

lo

Binary Search

Binary search. Given a key and sorted array a[], find index i
such that a[i] = key, or report that no such index exisfts.

Invariant. Algorithm maintains a[1o] < key < a[hi-1].

Ex. Binary search for 33.

33 43

lo hi

Binary Search

Binary search. Given a key and sorted array a[], find index i
such that a[i] = key, or report that no such index exisfts.

Invariant. Algorithm maintains a[1o] < key < a[hi-1].

Ex. Binary search for 33.

lo mid hi

Binary Search

Binary search. Given a key and sorted array a[], find index i
such that a[i] = key, or report that no such index exisfts.

Invariant. Algorithm maintains a(lo] < key =< a[hi-1].

Ex. Binary search for 33.

lo hi

Binary Search

Binary search. Given a key and sorted array a[], find index i
such that a[i] = key, or report that no such index exisfts.

Invariant. Algorithm maintains a[1o] < key =< a[hi].

Ex. Binary search for 33.

lo hi

mid

Binary Search

Binary search. Given a key and sorted array a[], find index i
such that a[i] = key, or report that no such index exists.

Invariant. Algorithm maintains a(lo] < key = a[hi-1].

Ex. Binary search for 33.

mid

Binary Search: Java Implementation

Invariant. Algorithm maintains a[lo] £ key £ a[hi-1].

public static int search(String key, String[] a)
{

return search(key, a, 0, a.length);

}

public static int search(String key, String[] a, int lo, int hi)
{

if (hi <= lo) return -1;

int mid = lo + (hi - 1lo) / 2;

int cmp = a[mid] .compareTo (key) ;

if (cmp > 0) return search(key, a, lo, mid);
else if (cmp < 0) return search(key, a, mid+l, hi);
else return mid;

Java library implementation: Arrays.binarySearch ()

Binary Search: Mathematical Analysis

Analysis. To binary search in an array of size N: do one comparison, then
binary search in an array of size N /2.

N —-N/2—-=N/4 -N/8 — ... = 1

Q. How many times can you divide a humber by 2 until you reach 1?

A. log, N. .

2—=1
4—-2 —=1
8—=4—-2 —1
16 >8—=4—-2 —1
32—=>16—-8—=4—=2 — 1
64—>32 - 16>8—=>4—>2 — 1]
128664 —>32 - 16 >8—=4—>2 —1
256 = 12864 —=32 - 16 =8 —=4—=2 —]
512 =256 - 128> 64 =32 - 16 > 8 —4—=2 —]
1024 —- 512 =256 - 128 =64 =32 —- 16 =8 =4 =2 — 1

Order of Growth Classifications

time

1024T S

512T

exponential

64T -

4T -

2T))
logarithmic

constant

| | | | | | | | | | |

size — 1K 2K 4K 8K 1024K
Orders of growth (log-log plot)

order of growth factor for

description function h‘i/%%?g;%s
constant 1 1
logarithmic log N 1
linear N 2
linearithmic ~ N log N 2
quadratic N2 4
cubic N3 8

exponential 2N 2N

Commonly encountered growth functions

Order of Growth Classifications

Observation. A small subset of mathematical functions suffice to describe
running time of many fundamental algorithms.

Ig N = log, N
NIgN

Summary

Q. How can I evaluate the performance of my program?
A. Computational experiments, mathematical analysis

Q. What if it's not fast enough? Not enough memory?
» Understand why.
* Buy a faster computer.
* Learn a better algorithm (COS 226, COS 423).
* Discover a new algorithm.

attribute better machine better algorithm

cost $$$ or more. $ or less.
sl makes "everything does not apply to
run faster some problems
: incremental quantitative dramatic qualitative
improvement

improvements expected improvements possible

