4.1,4.2 Performance and Sorting

INTRODUCTION TO

Programming
in Java

An Interdisciplinary Approach

Robert Sedgewick Kevin Wayne

Algorithmic Successes

N-body Simulation.
* Simulate gravitational interactions among N bodies.
* Brute force: NZ steps.

time
| quadratic(N 2)
64T

32T

16T

8T

T T T T
size — 1K 2K 4K 8K

number of bodies

N-body Simulation.
* Simulate gravitational interactions among N bodies.
* Brute force: NZ steps.
* Barnes-Hut: N log N steps, enables new research.

Running Time

“As soon as an Analytic Engine exists, it will necessarily
guide the future course of the science. Whenever any result
is sought by its aid, the question will arise - By what course
of calculation can these results be arrived at by the machine
in the shortest time?” — Charles Babbage

how many times do you
have to turn the crank?

Charles Babbage (1864) Analytic Engine

Algorithmic Successes

Andrew Appel
PU ‘81

time
| quadratic (N 2)
64T

32T

16T linearithmic (N log N)
8T

linear

T T T T
size — 1K 2K 4K 8K

number of bodies

Algorithmic Successes Algorithmic Successes

Discrete Fourier transform. Discrete Fourier transform.

* Break down waveform of N samples into periodic components.
* Applications: DVD, JPEG, MRI, astrophysics,
* Brute force: N? steps.

* Break down waveform of N samples into periodic components.
* Applications: DVD, JPEG, MRI, astrophysics,
Friich Gouss * Brute force: N2 steps.

* FFT algorithm: N log N steps, enables new technology.

John Tukey
1965

time time
quadratic (N 2) |

quadratic (N 2)
64T 64T
_ — — _ — —
]]
32T 32T
S S
16T 16T+
1) linearithmic (N log N)
(o o
L = linear L =
T T T T T T T T
size — 1K 2K 4K 8K size — 1K 2K 4K 8K
number of samples number of samples
Sorting
Sor‘Ting Sorting problem. Rearrange N items in ascending order.

Applications. Binary search, statistics, databases, data compression,

bioinformatics, computer graphics, scientific computing, (too numerous to
list) ...

Hauser Hanley
Hong Haskell
Hsu Hauser
Hayes - Hayes
Haskell Hong
Hanley Hornet

Hornet Hsu

Insertion Sort

Insertion Sort

Insertion sort.
* Brute-force sorting solution. <

__— insertion sort is simpler and faster than bubble sort,
so we don't teach bubble sort anymore

Insertion sort.

Insertion Sort

* Move left-to-right through array.
* Insert each element into final position by
exchanging it with larger elements to its left, one-by-one.

) a
! J 0 1 2 3 4 5 6 7
6 and had him his was you the
the you
4 the was
his the

Inserting a[6] into position by exchanging with larger entries to its left

Insertion Sort: Java Implementation

* Brute-force sorting solution.
* Move left-to-right through array.
* Exchange next element with larger elements to its left, one-by-one.

public class Insertion

0 1 2 3 4 5 6 7
was had him and you his the but

1 0 had was

2 1 him was

3 0 and had him was

4 4 you

5 3 his was vyou

6 4 the was you

7 1 but had him his the was you
and but had him his the was you

Inserting a[1] through a[N-1] into position (insertion sort)

{
public static void sort(String[] a)
{
int N = a.length;
for (int i = 1; i < N; i++)
for (int j =4i; j > 0; j--)
if (a[j-11 > a[3jl)
exch(a, j-1, j);
else break;
}

private static void exch(String[] a, int i, int j)

{
String swap = a[i];
a[i] = al[jl;
a[j] = swap;

}

Insertion Sort: Observation Insertion Sort: Empirical Analysis

Observe and tabulate running time for various values of N. Data analysis. Plot # comparisons vs. input size on log-log scale.
= Data source: N random numbers between O and 1.
* Machine: Apple G5 1.86Hz with 1.56B memory running OS X.

100000.000
= Timing: Skagen wristwatch.
10000.000
% 1000.000
5,000 6.2 million 0.13 seconds g
2
10,000 25 million 0.43 seconds g 100000 |
8
20,000 99 million 1.5 seconds
10.000 |
40,000 400 million 5.6 seconds
80,000 1600 million 23 seconds 1.000
1000 10000 100000 1000000
Input Size
slope
Hypothesis. # comparisons grows quadratically with input size ~ N2/ 4.
Insertion Sort: Empirical Analysis Analysis: Empirical vs. Mathematical
Observation. Number of compares depends on input family. Empirical analysis.
- Descending: ~ N2/2. * Measure running times, plot, and fit curve.
- Random: ~ N2/ 4. = Easy to perform experiments.
- Ascending: ~ N. = Model useful for predicting, but not for explaining.
1000000.000 ® Descending Mathematical analysis.
100000.000 ® Random - . ; . . .
10000000 ® Ascending . * Analyze algorithm to estimate # ops as a function of input size.
5 : . . i i
£ 1000000 : : May require advanced mathematics.
€ 100000 o E * Model useful for predicting and explaining.
< .
% 10.000
g8
g 1.000
A8}
el Critical difference. Mathematical analysis is independent of a particular
0010
machine or compiler; applies o machines not yet built.
0001
1000 10000 100000 1000000

Input Size

Insertion Sort: Mathematical Analysis
Worst case. [descending]

* Iteration i requires i comparisons.
e Total= O+ 1+2+..+N-1) ~ N2/2 compares.

HEDEEEE - - -
i

Average case. [random]
* Iteration i requires i/ 2 comparisons on average.
e Total =(O+1+2+..+N-1)/2 ~ N2/4 compares

BHEEBEDEE - - -
i

Moore's Law

Moore's law. Transistor density on a chip doubles every 2 years.

Variants. Memory, disk space, bandwidth, computing power per $.

Moore’s Law
The Fifth Paradigm

S
8
=
>
)
a
=
s
8
2
B
b}
a
S
k]
T
[}

El Rel In
1900 1910 1920 1930 1940 0 1980 1990 2000

http://en.wikipedia.org/wiki/Moore's_law

Insertion Sort: Lesson

Lesson. Supercomputer can't rescue a bad algorithm.

laptop

Comparisons -
“
107 1 day

instant 3 centuries

super 1012 instant 1 second 2 weeks

Moore's Law and Algorithms

Quadratic algorithms do not scale with technology.

* New computer may be 10x as fast.

* But, has 10x as much memory so problem may be 10x bigger.
» With quadratic algorithm, takes 10x as long!

“Software inefficiency can always outpace
Moore's Law. Moore's Law isn't a match
for our bad coding.” — Jaron Lanier

Lesson. Need linear (or linearithmic) algorithm to keep pace with Moore's law.

Announcements

Exam 1 looms. Mer‘geSOPT

Weritten exam Tuesday 3/13 during your lecture time. Room TBD.

Programming exam Tuesday 3/13 or Wednesday 3/14 in your precept.

First Draft

of a

Rooms, rules, details on Exams page of website. RepOIt on the
EDVAC

John von Neumann

Review session will be held.

Mergesort Mergesort: Example
Mergesort. MERGESORTEZXAMPLE
* Divide array into two halves. 2 M|
* Recursively sort each half. BEY

* Merge two halves to make sorted whole. [E G M R|

|E 8]
|o/R]
[Elo R S|
EEGMORR S|
sort left ET
and had him was | :A x|

sort right |a/E T x|
but his the you [mB|
merge [EL|
and but had him his the was you |E/L M|p|

input
was had him and you his the but

|aAlE ELMP TX|

AEEEEGLMMOPRRSTX

Top-down mergesort

Merging

Merging. Combine two pre-sorted lists into a sorted whole.

How o merge efficiently? Use an auxiliary array.

i j k aux[k]

0 1 2 3 4 5 6 7
and had him was but his the you
0 4 0 and and but
1 4 1 but had but
1 5 2 had had his
2 5 3 him him his
3 5 4 his was his
3 6 5 the was the
3 6 6 was was you
4 7 7 you you
Trace of the merge of the sorted left half with the sorted right half
Merging
Merge.

* Keep track of smallest element in each sorted half.
* Choose smaller of two elements.
* Repeat until done.

Merging

Merge.

* Keep track of smallest element in each sorted half.
* Choose smaller of two elements.

* Repeat until done.

Merging

Merge.

* Keep track of smallest element in each sorted half.
* Choose smaller of two elements.

* Repeat until done.

Merging

Merge.
* Keep track of smallest element in each sorted half.
* Choose smaller of two elements.
* Repeat until done.

v v
HEHRDOE EEEEE
R

Merging
Merging. Combine two pre-sorted lists into a sorted whole.

How to merge efficiently? Use an auxiliary array.

if (i == mid) aux[k] = a[j++];
else if (j == hi) aux[k] = a[i++];

else if (a[j].compareTo(a[i]) < 0) aux[k] a[j++];
else aux[k] afi++];

Merging

Merge.
* Keep track of smallest element in each sorted half.
* Choose smaller of two elements.
* Repeat until done.

v \
HEHRDE BEBEEEE
BEEEEE I

Mergesort: Java Implementation

int mid = lo + N/2;
sort(a, lo, mid);
sort(a, mid, hi);

i

lo mid h
ENEEEEEEEN

10 11 12 13 14 15 16 17 18 19

Mergesort: Empirical Analysis Mergesort: Prediction and Verification
Experimental hypothesis. Number of comparisons =~ 20N. Experimental hypothesis. Number of comparisons ~ 20N.

Prediction. 80 million comparisons for N = 4 million.

® Insertion sort Observations. °
° ® Mergesort 4 million 82.7 million 3.13 sec
Agrees.
100.0000! . 4 million 82.7 million 3.25 sec
2 4 million 82.7 million 3.22 sec
g 10.00001 .
w .
= .
£
% o000 0 . Prediction. 400 million comparisons for N = 20 million.
-
: Observations. 20 mill J— 75
0563 . million million . sec Not quiTe.
1000 10000 100000 1000000 50 million 1216 million 45.9 sec
Input Size
Mergesort: Mathematical Analysis Mergesort: Mathematical Analysis
Analysis. To mergesort array of size N, mergesort two subarrays Mathematical analysis.

of size N/2, and merge them together using < N comparisons.

we assume N is a power of 2 analysis comparisons

worst Nlog, N
Ta) N average Nlog, N
/\ best 1/2 Nlogy N
T(N/2) T(N/2) 2(N/2)
TN/ 4) T(N/ 4) TN/ 4) T(N/ 4) 4(N/4)

Validation. Theory agrees with observations.

log, N

10,000 120 thousand 133 thousand
20 million 460 million 485 million
7(2) T(2) T(2) T(2) T(2) T(2) T(2) T(2) N712(2) 50 million 1,216 million 1,279 million

Nlog, N

Mergesort: Lesson

Lesson. Great algorithms can be more powerful than supercomputers.

Binary Search

P— , |
-\"
Al
107

3 centuries 3 hours] [l I] ‘ [I _

laptop
super 1012 2 weeks instant : :
[CTTTTT 7 M. T
N = 1 billion }
EEEEEEEEEENEEEE
/
|
[(IIITTTTTTTTTITT]
Twenty Questions Binary Search
Intuition. Find a hidden integer. Idea:
interval size. Q A * Sort the array (stay tuned)
* Play "20 questions” to determine the index associated with a given key.
T i 128 <64? no

Ex. Dictionary, phone book, book index, credit card numbers, ...
1 64 <967 yes

64 128
— 32 <807 yes . 1o jaback
64 % Binary search.
—T 16 <727 1o * Examine the middle key.
* If it matches, return its index.
™ 8 <767 no * Otherwise, search either the left or right half. the key mid [macabre
72 80 (known value)
is between
Fl 4 <78% yes almid] and a[hi-1] 8
76 80 ”
the index — ¢ [query
(unknown value)
Iyl 2 <772 1o is betweenmid and hi-1
7678
-1
| 1 =77

77 Binary search in a sorted array (one step)

Binary Search

Binary search. Given a xey and sorted array a[], find index i

such that a[i] = key, or report that no such index exists.

Invariant. Algorithm maintains a[lo] < key =< al[hi-1].

Ex. Binary search for 33.

Binary Search

Binary search. Given a key and sorted array a[], find index i

such that a[i] = key, or report that no such index exists.

Invariant. Algorithm maintains a[lo] < key = al[hi-1].

Ex. Binary search for 33.

4 1 2 3 4 5 6 7 8 9 10 11
lo hi

Binary Search

Binary search. Given a xey and sorted array a[], find index i
such that a[i] = key, or report that no such index exists.

Invariant. Algorithm maintains a[lo] < key =< al[hi-1].

Ex. Binary search for 33.

6 13 14 25 33 43 51 53 64 72 84 93 95 96

4 1 2 3 4 5 6 7 8 9 10 11 12 13
lo mid

Binary Search

Binary search. Given a xey and sorted array a[], find index i
such that a[i] = key, or report that no such index exists.

Invariant. Algorithm maintains a[lo] < key = al[hi-1].

Ex. Binary search for 33.

XRRRRX IXX XXX 2333 IR IR 9995
R XK R RS KKK
6 13 14 (25 33 43 51 Saeben S SR
0 1 2 3 4 5 6 7 8 9 10 11 12 13
1o mid hi

Binary Search

Binary Search

Binary search. Given a xey and sorted array a[], find index i
such that a[i] = key, or report that no such index exists.

Binary search. Given a xey and sorted array a[], find index i
such that a[i] = key, or report that no such index exists.

Invariant. Algorithm maintains a[lo] < key =< al[hi-1].

Invariant. Algorithm maintains a[lo] < key =< al[hi-1].

Ex. Binary search for 33.

Ex. Binary search for 33.

i

K
RS
s
s
K
KX
s

CRIRR
X
SR8

.

RN,
SRR
RS
LR
R
R

RS
I
R

33. 51

R
SRR

SRKKE

%

"

AN
RAXRK

o
B,
SRR
8,

CRIRR
X
SR8

.

R
s
SRS
K
XK

R

L
n

R
s
s
KRR
s

Poteseserect
R

KK

-

14

13

10

9

8

7

2

1

o

14

13

10

9

8

2

1

hi

mid

lo

hi

lo

Binary Search

Binary Search

Binary search. Given a xey and sorted array a[], find index i
such that a[i] = key, or report that no such index exists.

Binary search. Given a key and sorted array a[], find index i
such that a[i] = key, or report that no such index exists.

Invariant. Algorithm maintains a[lo] < key = a(hi].

Invariant. Algorithm maintains a[lo] < key = al[hi-1].

Ex. Binary search for 33.

Ex. Binary search for 33.

i

XN
XRXXX
QA

BB
LRI,
KBRS

IR

.

s
s
o ots
K
KRR

B

SRR
SRERRS
SRS
XA

XS

RRAXK
s
s

092
KR

R
SRR

SRKKE

-

i

XN
RAXRK

ssssssseot
QL

o
B,
SRR
R,

CRIRR
KX
SR8

s
s
SRS
K
KRR
fssssssscod
S

5
S8
s
RORAXK
KK
s

R
SRR

KK

i

14

13

10

9

8

7

6

5

2

-

o

14

13

10

9

8

6

5

2

1

hi

lo

Binary Search

Binary search. Given a xey and sorted array a[], find index i
such that a[i] = key, or report that no such index exists.

Invariant. Algorithm maintains a[lo] < key =< al[hi-1].

Ex. Binary search for 33.

3320532808 29662662 XXX 2005200528 0362636266, X005 XHNXAL: 33200082008 200626 AL XAAHXNKL. X
(et ta st e tate et tothetete tatete? orotatatetototete v ototteteteretatettototeterole: oot tetatletete ot tottate et atetetotetetate!
QIR RL K05 [IIC T TSR 29I SR XA oo 0 S Totetes 1T Sottatets: K Sorderets’ o o 0en
R S B R A SRS R R ARSI
] 1 2 3 4 5 6 7 8 9 1 11 2 13 14

t

mid

Binary Search: Mathematical Analysis

Analysis. To binary search in an array of size N: do one comparison, then

binary search in an array of size N/ 2.

N -N/2—-N/4 -N/8 — ... = 1

Q. How many times can you divide a number by 2 until you reach 1?

A. log, N. 1

21
452 -1
§8—>4->2 -1
16>8—>4—>2 — 1|
32—=16—-8—24-2 -1
6432 > 16282422 —1
1286432 -16—>8—=4—2 — 1
256 > 128 >64—>32 > 16>8—>4—>2 — 1
5125256 —>128>64—>32 > 16>8—>4—>2 — |
1024 — 512 =256 > 128 > 64 =32 = 16 >8 =4 —>2 — |

Binary Search: Java Implementation

Invariant. Algorithm maintains a[lo] £ key <

alhi-1].

public static int search(String key, String[] a)

{
}

return search(key, a, 0, a.length);

public static int search(String key, String[] a, int lo, int hi)

{

if (hi <= lo) return -1;
int mid = 1o + (hi - lo) / 2;
int cmp = a[mid].compareTo (key) ;

if (cmp > 0) return search(key, a, lo, mid);
else if (cmp < 0) return search(key, a, mid+l, hi);

else return mid;

Java library implementation: Arrays.binarySearch ()

time

1024T

512T

64T |

8T |
47 |

2T

Order of Growth Classifications

exponential
(1‘515

logarithmic

constant

size —

T T T T T T T T T T T
1K 2K 4K 8K 1024K

Orders of growth (log-log plot)

order of growth factor for

description function h{i/‘;)%?;:gsgs
constant 1 1
logarithmic log N 1
linear N 2
linearithmic ~ N'log N 2
quadratic N2 4
cubic N3 8

exponential 2N 2N

Commonly encountered growth functions

Order of Growth Classifications Summary

Observation. A small subset of mathematical functions suffice to describe Q. How can I evaluate the performance of my program?

running time of many fundamental algorithms. A. Computational experiments, mathematical analysis

Q. What if it's not fast enough? Not enough memory?

while (N > 1) { public static void g(int N) {

N=N/2; if (N == 0) return; * Understand why.
o g(N/2) ;
} g(N/2) ; * Buy a faster computer.
for (int i = 0; i < N; i++))
IgN) .- * Learn a better algorithm (COS 226, COS 423).
Ig N = log, N * Discover a new algorithm.
NlIgN 9
for (int i = 0; i < N; i++)
300 attribute better machine better algorithm
N cost $$%$ or more. $ or less.
public static void £ (int N) {
if (N == 0) return; " s
FN-1); e makes "everything does not apply to
. .) . £(N-1) ; run faster some problems
for (int i = 0; i < N; i++)
for (int j = 0; j < N; j++) c
L. }) incremental quantitative dramatic qualitative
improvement . . q
2N improvements expected improvements possible

NZ

