
3-D Scene Analysis via Sequenced Predictions over Points and Regions

Xuehan Xiong Daniel Munoz J. Andrew Bagnell Martial Hebert
The Robotics Institute

Carnegie Mellon University
{xxiong, dmunoz, dbagnell, hebert}@ri.cmu.edu

Abstract— We address the problem of understanding scenes
from 3-D laser scans via per-point assignment of semantic
labels. In order to mitigate the difficulties of using a graphical
model for modeling the contextual relationships among the 3-D
points, we instead propose a multi-stage inference procedure
to capture these relationships. More specifically, we train this
procedure to use point cloud statistics and learn relational
information (e.g., tree-trunks are below vegetation) over fine
(point-wise) and coarse (region-wise) scales. We evaluate our
approach on three different datasets, that were obtained from
different sensors, and demonstrate improved performance.

I. INTRODUCTION

An important perception task for automated scene inter-
pretation from a 3-D point cloud is to uniquely label each
point in the scene with the semantic label of the object
the point lies on which (e.g., road, building, tree-trunk).
Inferring the labels based only on local features is very
difficult for a variety of reasons. For example, the viewpoint
from which objects are perceived can widely vary, the sensor
irregularly samples points from objects, and there is often
local ambiguity in appearance. To address this problem,
most approaches attempt to model the relationships among
elements in the scene typically through a graphical model.
The use of such graphical models has been widely used for
both 2-D images [9], [12] and 3-D point clouds [1], [19].
Typically in these structured models, a node in the graph is
a random variable representing a 3-D point’s label and edges
are formed to model context. In order to effectively model
context, many interactions need to be considered, which
result in a densely linked (loopy) graph/random field. In gen-
eral, exact inference over such a random field is intractable
and only approximate methods can be used. This complicates
learning such models as exact inference is required and the
use of approximate inference results in learned solutions that
are arbitrarily bad [11]. Therefore, to mitigate this problem,
in addition to restrictive interactions (e.g., the prevalent Pott’s
model) needed for many approximate inference techniques,
we propose an alternative technique for 3-D point cloud
labeling that does not explicitly model a joint probability
distribution.

Instead of performing inference as a generic procedure
(e.g., loopy belief propagation), we instead directly design
and train an inference procedure via a sequence of pre-
dictions from simple machine learning modules that are
structured to net the desired labeling. As detailed in Section
IV-A, each module makes a soft prediction of what labels
are present either at a point-wise scale or over a region

Fig. 1. Our point cloud labelings on three different datasets. Top:
VMR-Oakland-v2. Middle: GML-PCV. Bottom: RSE-RSS. Each color
indicates a different class: grey = ground, light-red = building, brown =
tree-trunk, dark-green = vegetation, pink = vehicle, dark-blue = pole, light-
blue = wire, light-green = shrub, dark-red = fence, yellow = background.
Note: each dataset contains different subsets of these classes.

of 3-D points; by soft, we mean that the classifier module
outputs a probability distribution instead of a single label.
The output probabilities of spatially neighboring areas are
then fed as inputs into another module in order to propagate
contextual information. Our contribution is how to structure
these modules and use their outputs for effective 3-D scene
analysis. We demonstrate the effectiveness of our approach
on three different 3-D point cloud datasets obtained from
three different laser scanning systems with multiple semantic
labels, as illustrated in Fig. 1. The VMR-Oakland-v2
dataset was collected from a ground vehicle scanning in
profile; the GML-PCV dataset was collected from an airborne
laser; the RSE-RSS dataset was collected from a ground
vehicle scanning with a 360◦ field of view.

(a) (b) (c)
Fig. 2. Overview of various steps in the overall procedure. (a) shows the segmented points in the second level (colored by segment). The pink segment
receives contextual information from its neighbors. (b) Contextual information is sent from the region (top level) to all points (bottom level) that constitute
it (the points are colored by their class for visualization purposes). (c) Contextual information is averaged from the points and sent to the region level.

II. RELATED WORK

3-D scene analysis has become an important problem in
all types of environments, including street-level [3], [8], [7],
indoor [21], [24], and aerial [16]. Patterson et al. approached
this problem by memory-based learning [20]. During train-
ing, point and object features are computed and stored in
databases A and B. During inference, points are classified
as positive or negative samples through nearest neighbors
in database A. Then, they connect the neighboring positive
sample points to form segments. The database B is queried
and returns a positive or a negative detection based on the
thresholded distance between the stored models and each
extracted segment. In addition to inference time as a function
of the database size, such an approach is also sensitive to the
detected regions of interest and selected threshold value. Lai
and Fox [13] also investigate a similar data-driven technique
using sampled CAD models downloaded from the internet;
we compare our approach with this in Section VI-C. In
contrast with the above exemplar based approaches, our algo-
rithm does not require ground removal or such pre-filtering
of the point cloud and uses contextual information. Other
models that follow a similar statistical learning approach
often use graphical models [1], [19], [22]. We compare with
two different types of graphical models in our analysis (Sec.
VI) to illustrate our approach’s effectiveness.

III. OVERVIEW

The main idea of our approach is that we directly train
the steps of an inference procedure to ultimately obtain a
semantic per 3-D point labeling. Our approach builds off
the work of Munoz et al. [18] for 2-D scene analysis. The
following describes their procedure at a high-level, which
will become more clear when we detail our procedure for
the 3-D case in the following paragraphs. In [18], the image
is analyzed by examining multiple regions from coarse to
fine via a hierarchical segmentation of the image. Starting
at the top level in the hierarchy, their algorithm trains a
first classifier to predict the label distributions present in
the level’s regions. Next, a second classifier is again trained
over the level’s regions but now also uses the first classifier’s
predictions from neighboring regions to encode context, i.e.,
the second classifier is sensitive to the context within the

level. The outputs from the second classifier are then passed
to the child level which are used in conjunction with the
child regions’ image features to train another classifier for
the finer regions. This refining process is repeated until the
bottom level is reached.

Figure 2 illustrates the analogous steps of [18] in the 3-
D domain. We construct a two-level hierarchy1 where the
bottom level consists of points and the top level is a seg-
mentation which may contain regions that consist of mixed
labels. The regions in the hierarchy do not change during the
procedure. In practice, we use k-means++ [2] clustering over
(x, y, z), where the k is defined to be 1% of the number of
points, to produce segments that (roughly) cover the non-
ground objects. Without the ambiguities introduced from
a 3-D to 2-D projection in images, we observe that this
simple clustering produces more stable segmentations than is
typically observed with sophisticated image segmentations.
Furthermore, our 3-D features are less sensitive to the seg-
mentation quality than is needed to model shape in images.

In Fig. 2(a) we illustrate the use of contextual information
for regions in the top-level. At this stage, each region
in the level is already associated with a predicted label
distribution from the previous classifier. We update the intra-
level context of each region with features that encode the
neighboring regions’ predictions, as illustrated with the pink
region using its neighbors. In Section IV-B we investigate
how to effectively encode these 3-D relationships. Another
classifier is then trained across all regions in this level, where
each region’s features consist of point cloud descriptors and
the intra-level context information. The main idea is that
the contextual information should refine the prediction. For
example, the partially predicted tree-trunk below the pink
region should help decipher that it is mostly vegetation; in
Section IV-B we demonstrate that our approach learns this
naturally occurring phenomenon.

In Fig. 2(b), the newly predicted label distribution is
then passed to the points that constituted the region. These
predictions are used as one source of inter-level context for
each point. Now, a classifier is trained over the points that
uses this inter-level context in addition to the point cloud

1We observed marginal difference in performance beyond this two-level
hierarchy but note that our description naturally extends to the deeper case.

descriptors. As similarly done in (a), we also train another
classifier at the point-level that uses neighboring points’
predictions. In addition to parsing down the hierarchy, we
can similarly proceed up the hierarchy. In Fig. 2(c), the
predicted label distributions of the points belonging to region
are averaged and sent to it. These averaged distributions are
the other inter-level context of a region. The number of times
we go up/down the hierarchy and the number of rounds we
perform intra-level context updates in a level are determined
by a validation set.

IV. TRAINING THE PARSING PROCEDURE

For the remainder of the paper, we will interchangeably
call “region” both a group of 3-D points in the top level or
a single 3-D point in the bottom level. The next subsections
describe the individual components of the learning proce-
dure. We first explain our choice of the base classifier used
to classify regions (Sec. IV-A). We then describe how we use
neighboring predictions to encode context. Using these two
modules, we describe how we use intra-level context through
a sequence of classifiers (Sec. IV-C) and how they are tied
together up and down the hierarchy (Sec. IV-D).

A. Base Classifier

We define Ci to be the random variable representing the
class of a region, xi ∈ Rd to be its features (note that
this will include both point cloud descriptors and contextual
information), and yi to be its ground truth distribution of K
labels, i.e., yi is a vector of length K that contains values
in [0, 1] and sums to 1. We use a simple K-class logistic
regression (LogR) model Qw, parameterized by w ∈ RKd

to predict the label distributions per region:

Qw(Ci = k|xi) =
exp(wT

k xi)∑K
a=1 exp(w

T
a xi)

. (1)

In order to handle regions that may contain more than one
label, we train the model by minimizing the cross entropy
of yi and the model Qw; this reduces to a weighted max-
likelihood estimation problem:

argmax
w

∑
i

∑
k

yi,k logQw(Ci = k|xi)− λ||w||2, (2)

where yi,k = yi[k] and λ > 0 regularizes the model.
This problem is concave and we optimize it with stochastic
gradient ascent.

Given a training set of samples X = {xi} and respective
distributions Y = {yi}, we denote w = T (X,Y) as solving
the maximization problem in Eq. 2. Given a set of samples
X and parameters w, we denote Ŷ = P(X,w) as predicting
the label distributions (Eq. 1) for each sample.

B. Contextual Features

Given that each region in a level is associated with a dis-
tribution of labels, we wish to model the neighboring spatial
context that surrounds each region. To do this, we compute
contextual features that encode these spatial distribution of
labels. These context features can then be appended to a

Fig. 3. Illustration of intra-level contextual features.

region’s feature vector xi and used in the classifier. In our
approach, we model what is above, below, and adjacent to
each region, as illustrated in Fig. 3. That is, we construct a
neighborhood sphere centered at a region’s centroid and then
equally divide this sphere into three slices along the z-axis
(vertical direction). In the bottom and top levels we use large
radii of 4 m and 12 m, respectively. Large radii are needed to
cover the large spatial extent from an object’s centroid to its
neighboring regions’ points. Within each slice we average the
label distributions of the contained points to obtain a feature
vector of length K, per slice. In order to model the spatial
configuration of the neighboring points, (e.g., neighboring
points on poles should lie directly above/below) within each
slice we also average of the angles formed between the
positive z-axis and the vector from the region’s centroid O
to each neighboring point Ni, resulting in a value in [0, π].

Given a set of features X and label distributions Y , we
denote the process of computing and appending/updating the
3(K + 1) contextual features to each xi as X ′ = φ(X,Y).

C. Multi-Round Stacking (MRS)

By sequentially training a series of classifiers, we can
ideally learn how to fix the mistake from the previous one. In
addition, we can use these previous predictions as contextual
cues. That is, given a labeled training set X,Y , we first
train a classifier w1 = T (X,Y) over the entire training set.
Using w1, we can classify X to generate predictions Ŷ =
P(X,w1) from which to derive contextual cues, as described
above, and then train a new classifier w2. Specifically, we
use Ŷ to create a new feature set with contextual cues
X1 = φ(X, Ŷ) and train a new classifier w2 = T (X1, Y).
The process can be repeated for multiple rounds until no
improvement is observed. However, note that if we were to
use w1 to classify our training data, the resulting predictions
would be more optimistically correct than it would be on
the unseen test data. Therefore, training another classifier on
the outputs is prone to overfitting. To mitigate this issue, we
use the technique of stacking [23] as successfully used in
[5], [18]. The following details how we use stacking in the
context of our application; the procedure is similar to cross
validation.

Instead of training a single classifier over the entire
training set, we generate multiple temporary classifiers that
are solely used at training time. The purpose is to generate
predictions over the examples that were not used to train
a classifier. We equally partition the training set into 5
disjoint subsets X = {Xi}5i=1 and Y = {Yi}5i=1. For each

Fig. 4. Classification evolution via multiple rounds of stacking. Top-left:
initial classification, Top-right: 1 round Bottom-left: 2 rounds, Bottom-right:
4 rounds.

Fig. 5. Learned tree-trunk weights for its contextual features.

subset, we train a temporary classifier on the other subsets
γ = T (X−Xi, Y −Yi) and then use γ only on the samples
in Xi to generate predictions Ŷi = P(Xi, γ). Note that
this procedure is only done at training time to generate the
predictions Ŷ and each temporary classifier γ is discarded
afterwards. The intuition behind this technique is that the
context derived from Ŷ is as “noisy” during training as it
will be during testing.

In [18], only one iteration of stacking is used per level;
however, we found it beneficial to do multiple rounds of
stacking (MRS). Figure 4 illustrates the effectiveness of
performing multiple rounds of stacking on real data; the
scene is a closeup of a utility pole near vegetation. Initially,
the classification is poor as many of the wires/power-lines
are mistaken as building, but the contextual cues help the
subsequent rounds. At each round, we update each region’s
context features from the previous round, instead of always
concatenating. Regions that do not fit in the context are
iteratively corrected.

It is useful to verify that we learn meaningful context.
Therefore we examined our learned parameters w to observe
the types of relationships we learned. In Fig. 5, we plot the
portion of wtree−trunk that corresponds to the contextual
features. Here we observe that the algorithm correctly learned
that a tree trunk region is likely to have vegetations above
but not below and to have car and ground in the bottom slice
but not in the top slice.

D. Stacked 3-D Parsing

In this section we tie all the previous components together,
resulting in a 3-D parsing algorithm that uses three sources
of contextual information: points, regions, and spatial context
through stacking. We refer to this entire algorithm as Stacked
3-D Parsing (S3DP).

Given a labeled point cloud, we construct the two-level
hierarchy, extract point cloud feature descriptors, and create
ground truth label distributions for both the bottom (Xb, Yb)
and top (Xt, Yt) levels. We then determine in which order
the hierarchy should be traversed. The number of traversals
and rounds of stacking that we perform is found through
validation. In practice, we often obtain good performance
with starting at the bottom, going up, and then back down.

The following describes how we parse up the hierarchy:
1) Apply N rounds of MRS on a dataset (Xb, Yb).

MRS returns a sequence of N + 1 classifiers f(b) =

{wn
(b)}

N+1
n=1 and the hold-out predictions Ŷb from the

last round of stacking.
2) Extend each region feature vector xi ∈ Xt with the

average of its children’s probability distributions in
Ŷb.

3) Apply N rounds of MRS on a dataset (Xt, Yt), which
returns f(t) = {wn

(t)}
N+1
n=1 .

4) Save f(t) and f(b) for inference.
The following describes how we parse down the hierarchy:
1) Apply N rounds of MRS on a dataset (Xt, Yt).

MRS returns a sequence of N + 1 classifiers f(t) =

{wn
(t)}

N+1
n=1 and the hold-out predictions Ŷt from the

last round of stacking.
2) Extend each point feature vector xi ∈ Xb with its

parent probability distributions in Ŷt.
3) Apply N rounds of MRS on a dataset (Xb, Yb), which

returns f(b) = {wn
(b)}

N+1
n=1 .

4) Save f(t) and f(b) for inference.
Inference proceeds in the same sequence, where we use

the classifiers in f to make predictions in the same order in
which we trained the procedure.

V. EXPERIMENTAL SETUP

A. Features

At the bottom (point) level of the hierarchy we compute
three geometric features [17], [15]. These values measure
scatter, linearity and planarity of the local neighborhood
of points within a specified radius. In our experiments,
the neighborhood is defined within a 0.8 m radius for the
VMR-Oakland-v2 and RSE-RSS datasets and 2 m for the
GML-PCV dataset. We also use two directional features to
capture the local orientation. These are the scalar projection
of the locally estimated tangent and normal directions onto
the z-axis.

The following features are used both in the bottom and top
levels: the dimensions of the bounding box that encloses the
points in the three principal component space, spin images
[10] around z-axis, and relative elevations. The bounding
box is computed over the local neighborhood in the bottom

level and over the regions themselves in the top level. Spin
images are 5 × 5 in the bottom level and 11 × 11 in the
top level, with each cell being 0.2 m × 0.2 m. To estimate
relative elevations, we first compute a 2.5-D elevation map
with 10 m × 10 m cells that contain the min and max z-
coordinates (elevation). We then compute the two differences
in elevation between the region’s centroid elevation and its
cell’s two extrema.

In the top level we compute two additional types of
features. The first computes the differences between each
region’s centroid and its min and max elevations. The second
evenly breaks the region into two components along the z-
axis and then computes a 10 bin histogram over the bottom-
level features from the points in each component.

B. Evaluation Metric

To compare the results from different algorithms we
consider the average of the per-class F1 scores. The F1

score of a class k is the harmonic means of its precision
pk and recall rk and is defined as 2pkrk/(pk + rk). We
use F1 instead of overall accuracy as the latter can hide
poor performance of classes with few samples, and we
observe a class imbalance in all the datasets we analyze. In
VMR-Oakland-v2 dataset, we generate 5 different training
and testing splits and average the F1 scores across all splits.
For the GML-PCV and RSE-RSS datasets, we follow the
same respective evaluation methods used in [22] and [13]. In
addition, for each dataset we also show the results obtained
by our base classifier LogR trained using only local point
features.

VI. EXPERIMENTAL RESULTS

A. VMR-Oakland-v2 Dataset

This dataset2 of the area surrounding the Carnegie Mellon
University campus contains 3.1 M points that were scanned
in profile from a laser at ground level. We divide the
data into 36 sets, each of which is contains about 85,000
points, to facilitate training (6 sets), validation (6 sets) and
testing (remaining sets). The objects we are interested in
are wire, pole, ground, vegetation, tree-trunk, building, and
car. We compare with the linear, associative Max-Margin
Markov Network (M3N) approach3 of Munoz et al. [19].
Both algorithms use the same training, validation, and testing
sets as well as the same features described above (except
the M3N cannot use the contextual features). In the M3N,
the nodes are defined over the points, edges are constructed
using 5-NN, and higher order cliques are our same top level
regions. The edge features are the inverse differences of the
neighboring nodes’ features.

Our method achieved an average F1 score of 0.76 while
M3N and LogR average 0.71 and 0.61, respectively. Quali-
tative results of M3N and S3DP are shown in Fig. 6. We
can see a significant improvement on the points that are
at the boundary of object regions using S3DP. This can be

2http://www.cs.cmu.edu/˜vmr/datasets/
3http://www.cs.cmu.edu/˜vmr/software/software.html

explained by the way M3N represents interactions between
points. The higher order potentials over regions prefer for
the region to have a homogeneous label. In contrast, our ap-
proach supports heterogeneous label distributions and it can
preserve the correct labeling at the boundary of regions. For
example, in (f) the top border of a building is misclassified
as vegetation using M3N model. This is because, the points
possess similar local features (scatter and high elevation) that
resemble vegetation. Furthermore region-wise features do
not disambiguate the problem and the high-order clique will
prefer to group these points as the same incorrect label. S3DP
solved this problem by learning the context of the regions
in the top level. Such context becomes essential when local
features and point context both failed to capture the correct
label. The shrubs in the bottom-left corner of the scene
illustrate a situation when M3N succeeds (e) while S3DP
fails (f). S3DP confuses shrubbery vegetation with building
because the algorithm learned to “correct” vegetation into
building since it fits into the context more properly (building
regions are more likely to be directly above another building
region than a vegetation region). M3N ignores the relational
context above and correctly classifies this region based on
its local features.

Table I shows individual class performance of the three
algorithms. As we expected, LogR performs the worst of the
three since it does not include any contextual information.
From its poor performance on tree-trunk, car, and wire we
can see that this is a difficult dataset. S3DP is superior
in classifying car and tree trunk. Illustrated in Fig. 5, our
algorithm learned that a narrow linear region with vegetation
above is more likely belong to tree-trunk than pole. In 3-D
data without the color and textural information, this learned
relational feature has become the only difference between
narrow tree trunks and poles. M3N fails to capture such
spatial layout of different objects (Fig. 6-d).

wire pole ground veg trunk bldg. vhc.

P
S3DP 0.73 0.51 0.99 0.96 0.65 0.83 0.79
M3N 0.66 0.55 0.99 0.94 0.55 0.80 0.70
LogR 0.49 0.42 0.99 0.90 0.46 0.74 0.63

R
S3DP 0.75 0.67 0.98 0.93 0.41 0.93 0.74
M3N 0.72 0.63 0.99 0.94 0.30 0.92 0.43
LogR 0.52 0.53 0.99 0.90 0.13 0.87 0.38

TABLE I
VMR-OAKLAND-V2 PRECISIONS (P) AND RECALLS (R), AVERAGED

OVER FIVE SPLITS.

The following demonstrates that contextual information
from three directions all contribute in the classification task.
In an inference procedure, let (N,S) indicate the number
of intra-level stacking rounds N and S ∈ {↑, ↓}h be a
parsing sequence of h traversals, where ↑ and ↓ indicates
traversing up and down the hierarchy, respectively. For one
split on validation data we scored 0.72 for (N,S) = (0, ↓),
0.79 for (1, ↓), 0.81 for (2, ↓), and 0.82 for (1, ↑↓). Such
configurations are performed for all datasets and the best
performing configuration on validation data is selected.

(a) (b)

(c) (d)

(e) (f)
Fig. 6. Example classifications from VMR-Oakland-v2 dataset using S3DP and M3N are shown in the left column and right column, respectively.
Buildings are colored by dark red to increase the contrast between building and tree trunks.

(a) (b) (c)

(d) (e) (f)
Fig. 7. Example classifications from GML-PCV. Left column: ground truth labeling. Middle column: S3DP classification. Right column: LogR classification.

B. GML-PCV Dataset

We evaluated our algorithm on an aerial dataset4 from
Shapovalov et al. [22]. The evaluation is performed on two
different datasets A and B. Each dataset contains a training
and testing split of about 1 M points each. We divide
each training subset into two for parameter learning and
validation. Set B contains four classes (ground, roof/building,
tree, low vegetation/shrub) and set A contains the same four

4http://graphics.cs.msu.ru/en/science/research/3dpoint/classification

and cars. The two sets are evaluated separately, as done in
[22]. Shapovalov et al. [22] use a pairwise Markov network
that is constructed over segments instead of points. However,
instead of associative/Pott’s potentials, they model the co-
occurrence relationship between classes. They refer to this
model as a Non-Associative Markov Network (NAMN).

Table II shows the per-class performance of the three
algorithms. Our algorithm outscored NAMN 0.66 to 0.59
in dataset A and 0.85 to 0.77 in dataset B. LogR averages

Dataset A ground bldg tree low veg car

P
S3DP 0.95 0.91 0.99 0.31 0.54

NAMN 0.90 0.87 0.92 0.72 0.37
LogR 0.92 0.74 0.96 0.06 0.03

R
S3DP 0.98 0.77 0.98 0.36 0.10

NAMN 0.96 0.58 0.99 0.09 0.16
LogR 0.96 0.37 0.93 0.13 0.01

Dataset B

P
S3DP 0.99 0.83 0.97 0.53

NAMN 0.99 0.88 0.95 0.25
LogR 0.98 0.79 0.88 0.38

R
S3DP 0.99 0.92 0.97 0.52

NAMN 0.98 0.81 0.89 0.57
LogR 0.99 0.63 0.96 0.10

TABLE II
GML-PCV DATASETS A AND B PRECISIONS (P) AND RECALLS (R).

0.49 in A and 0.69 in B. In A all three algorithms per-
form poorly on cars and low vegetation. In contrast with
VMR-Oakland-v2, car objects include much fewer points.
The shape information of small objects is almost lost in
these long range aerial scans. Because of this, car and low
vegetation share similar local features and no contextual
information can be used to differentiate between the two.
Without the confusion between cars and low vegetation we
can see an improvement on low vegetation in dataset B.

One key characteristic of this dataset is that the ground
points are not on the same elevation, so the elevation of
a point provides little information about its class. Due to
such difficulty, LogR has extremely poor performance on low
vegetation and car. For example, LogR cannot distinguish
low vegetation from high vegetation because of their similar
local features (Fig. 7-f). Our algorithm used stacking to learn
that low vegetation has a high distribution of ground in its
neighborhood while high vegetation does not and corrects
this mistake (Fig. 7-e).

Another example is shown in Fig. 7-c. Using only local
features, points on the roofs/building are confused with
ground because when there is a large area of building, the
relative 2.5-D elevation feature can no longer discriminate
between ground and buildings. Our algorithm learns that
building regions are above the neighboring ground and
propagates this information. It corrects mislabeled building
points using this contextual information (Fig. 7-b).

C. RSE-RSS Dataset

This dataset5 from Lai and Fox [13] contains 10 scans
of approximately 65,000 points each. It was collected by a
Velodyne laser scanner on the ground. We consider it as the
most difficult dataset of the three due to the noisy and sparse
point measurements as well as noisy ground truth labelings.
Our task is to classify each point into the following 8 classes:
ground, street sign, tree, building/house, fence, person, car,
and background (which is everything else). We follow the
evaluation method described in [13] where we randomly
generate 10 training and testing splits and average the results

5http://www.cs.washington.edu/homes/kevinlai/datasets.html

from them. In each training split, we use 5 files for training
and use leave-one-out cross-validation to select parameters.

In [13], the authors perform segmentation over the point
cloud and then classify each resulting segment using a non-
parametric method. In order to obtain better segmentation,
they apply ground removal to the scene beforehand. A
distance function is associated with every segment and it is
learned by maximizing the margin between the segments of
the same class and the segments from other classes. They also
introduced a Domain Adaptation (DA) method to learn with
CAD model data in conjunction with the real point cloud
data. They demonstrated increased performance compared
with only training on real scans.

The background class could contain various objects such
as stairs, fire hydrants, and traffic lights. Treating them
as a single, broad class eliminates learning context among
different classes that could be helpful in classification. For
example, stairs often appear with buildings but by combining
stairs, fire hydrants and traffic lights into a single background
class makes learning such relations prohibited. Furthermore,
modeling such a broad class that mixes objects of drastically
different appearance is hard with our linear classifier. In
addition, Fig. 8-c shows trees, ground and houses that are
mislabeled as background. As a result, our algorithm learns
that background can appear in the neighborhood of any other
class. The above issues explain why stacking does not fix the
mislabeling between background and other classes (Fig. 8-a).

In Table III, our algorithm demonstrates comparable re-
sults with using only real scan data. Our F1 scores are from
the confusion matrix over all 8 classes while the DA result
from [13] is over 7 classes without ground; performance
on background is not reported in their paper. Our algorithm
averages 0.46 over the remaining 6 classes while DA scores
0.47. Our algorithm shows its advantage on the classes that
can provide enough training samples. The better performance
DA on classes with fewer examples, such as person and car,
may be due to the use of additional training data from the
CAD models. A natural extension in future work would be
to add domain adaptation to our algorithm, such as using the
simple technique from Daume III [6].

bkgd st sign ground tree house fence person car
0.79 0.28 0.94 0.66 0.83 0.31 0.20 0.49
N/A 0.35 N/A 0.55 0.73 0.32 0.31 0.57
0.78 0.21 0.94 0.51 0.74 0.17 0.13 0.29

TABLE III
RSE-RSS PER-CLASS F1 SCORES. TOP ROW: S3DP. MIDDLE ROW:

DOMAIN ADAPTATION [13]. BOTTOM ROW: LOGR.

D. Timings

We analyze the run-time behaviors of S3DP and M3N
on the VMR-Oakland-v2 dataset using an Intel Xeon
X5670 2.93 Ghz processor. Both S3DP and M3N use the
same configuration for constructing the regions and feature
computations. On average over a test point cloud, k-means
and feature computation take 5.4 s and 11.2 s, respectively.

(a) (b) (c)

Fig. 8. Example classifications from RSE-RSS. (a) S3DP classification. (b) Ground truth labeling. (c) Example of noisy ground truth mislabeling.

With S3DP, a preprocessing step is done to compute the
neighbors from which the contextual features (Fig. 3) are
computed, and then inference is performed with a sequence
of predictions. With M3N, the high-order random field
structure uses the same regions as in S3DP, but additionally
constructs edge potentials in the random field and then solves
multiple min-cut/max-flow problems for inference.

With S3DP, performing one traversal sequence takes linear
time in the number of regions; as mentioned before, we
found that using two traversals often works well. On average,
performing 5 sequential predictions that traverses up and
down the hierarchy totals 2.4 s. With our random field
structure that locally links neighbors, performing a single
min-cut operation takes time roughly quadratic in the number
of regions. On average, performing graphcut inference totals
10.4 s, using the optimized implementation from [4].

The time complexity for the feature computation and
the preprocessing steps depend on the neighborhood search
algorithm. In our implementation, we used a simple k-d tree
to perform spatial range searches in the point cloud and paral-
lelized these lookups over 8 cores when possible. Computing
the neighborhoods for the contextual features totals 19.3 s,
and linking 5-NN in the random field totals 2.9 s. In this
work we analyzed point clouds assuming an unorganized
structure and thus the majority of our computation is due
to performing range searches and is not due to expensive
computations inherently needed by the inference algorithm.
Future work will aim to decrease computation time inherent
to 3-D processing by taking advantage of structured readings
(e.g., ordered scan lines), faster data structures (e.g., [14]),
and focused processing over smaller areas of interest.

VII. CONCLUSION

In this work we propose a sequential parsing procedure for
scene analysis in 3-D point clouds. This procedure performs
a series of very simple predictions and can effectively encode
neighboring context. In our analysis, we demonstrate that
it can learn meaningful spatial layout of objects such as
tree-trunks are below vegetation. Over an extensive set of
experiments, we demonstrate that this conceptually simple
approach is favorable in many environments that are scanned
with different sensors.

ACKNOWLEDGEMENTS

This work was conducted through collaborative participa-
tion in the Robotics Consortium sponsored by the U.S Army

Research Laboratory under the Collaborative Technology
Alliance Program, Cooperative Agreement W911NF-10-2-
0016. D. Munoz was supported by a QinetiQ North America
Robotics Fellowship.

REFERENCES

[1] D. Anguelov, B. Taskar, V. Chatalbashev, D. Koller, D. Gupta,
G. Heitz, and A. Ng. Discriminative learning of markov random fields
for segmentation of 3-d scan data. In CVPR, 2005.

[2] D. Arthur and S. Vassilvitskii. k-means++: The advantages of careful
seeding. In SODA, 2007.

[3] J. Behley, K. Kersting, D. Schulz, V. Steinhage, and A. B. Cremers.
Learning to hash logistic regression for fast 3d scan point classifica-
tion. In IROS, 2010.

[4] Y. Boykov and V. Kolmogorov. An experimental comparison of min-
cut/max-flow algorithms for energy minimization in computer vision.
T-PAMI, 26(9), 2004.

[5] W. W. Cohen and V. R. Carvalho. Stacked sequential learning. In
IJCAI, 2005.

[6] H. Daumé III. Frustratingly easy domain adaptation. In ACL, 2007.
[7] B. Douillard, J. Underwood, V. Vlaskine, A. Quadros, and S. Singh.

A pipeline for the segmentation and classification of 3D point clouds.
In ISER, 2010.

[8] O. Hadjiliadis and I. Stamos. Sequential classification in point clouds
of urban scenes. In 3DPVT, 2010.

[9] X. He, R. S. Zemel, and M. A. Carreira-Perpinan. Multiscale
conditional random fields for image labeling. In CVPR, 2004.

[10] A. E. Johnson and M. Hebert. Using spin-images for efficient multiple
model recognition in cluttered 3-D scenes. T-PAMI, 21(5), 1999.

[11] A. Kulesza and F. Pereira. Structured learning with approximate
inference. In NIPS, 2007.

[12] S. Kumar and M. Hebert. Discriminative random fields. IJCV, 68(2),
2006.

[13] K. Lai and D. Fox. 3D laser scan classification using web data and
domain adaptation. In RSS, 2009.

[14] J.-F. Lalonde, N. Vandapel, and M. Hebert. Data structure for efficient
dynamic processing in 3-d. IJRR, 26(8), 2007.

[15] J.-F. Lalonde, N. Vandapel, D. F. Huber, and M. Hebert. Natural
terrain classification using three-dimensional ladar data for ground
robot mobility. Journal of Field Robotics, 23(10), 2006.

[16] W. L. Lu, K. Okuma, and J. J. Little. A hybrid conditional random
field for estimating the underlying ground surface from airborne lidar
data. IEEE T-GRS, 47(8), 2009.

[17] G. Medioni, M. Lee, and C. K. Tang. A Computational Framework
for Segmentation and Grouping. Elsevier, 2000.

[18] D. Munoz, J. A. Bagnell, and M. Hebert. Stacked hierarchical labeling.
In ECCV, 2010.

[19] D. Munoz, J. A. Bagnell, N. Vandapel, and M. Hebert. Contextual
classification with functional max-margin markov networks. In CVPR,
2009.

[20] A. Patterson, P. Mordohai, and K. Daniilidis. Object detection from
large-scale 3-D datasets using bottom-up and top-down descriptors. In
ECCV, 2008.

[21] R. B. Rusu, Z. C. Marton, N. Blodow, M. Dolha, and M. Beetz. To-
wards 3d point cloud based object maps for household environments.
Robotics and Autonomous Systems, 56(11), 2008.

[22] R. Shapovalov, A. Velizhev, and O. Barinova. Non-associative markov
networks for 3D point cloud classification. In Photogrammetric
Computer Vision and Image Analysis, 2010.

[23] D. H. Wolpert. Stacked generalization. Neural Networks, 5(2), 1992.
[24] X. Xiong and D. Huber. Using context to create semantic 3D models

of indoor environments. In Proc. BMVC, 2010.

