
The Visual Computer manuscript No.
(will be inserted by the editor)

Andrei Sharf · Marina Blumenkrants · Ariel Shamir · Daniel Cohen-Or

SnapPaste: An Interactive Technique for Easy Mesh Composition

Abstract Editing and manipulation of existing 3D geomet-
ric objects are means to extend their repertoire and promote
their availability. Traditionally, tools to compose or manipu-
late objects defined by 3D meshes are in the realm of artists
and experts. In this paper, we introduce a simple and effec-
tive user interface for easy composition of 3D mesh-parts for
non-professionals. Our technique borrows from the cut-and-
paste paradigm where a user can cut parts out of existing
objects and paste them onto others to create new designs.
To assist the user attach objects to each other in a quick
and simple manner, many applications in computer graphics
support the notion of “snapping”. Similarly, our tool allows
the user to loosely drag one mesh part onto another with an
overlap, and lets the system snap them together in a graceful
manner. Snapping is accomplished using our Soft-ICP algo-
rithm which replaces the global transformation in the ICP
algorithm with a set of point-wise locally supported trans-
formations. The technique enhances registration with a set
of rigid to elastic transformations that account for simultane-
ous global positioning and local blending of the objects. For
completeness of our framework, we present an additional
simple mesh-cutting tool, adapting the graph-cut algorithm
to meshes.

Keywords Interactive Tools · User-Interface · Cut-and-
Paste · Snapping · Meshes

A. Sharf
Tel Aviv University
Tel.: +972-3-6405360
E-mail: asharf@tau.ac.il

M. Blumenkrants
The Interdisciplinary Center Herzliya

A. Shamir
The Interdisciplinary Center Herzliya

D. Cohen-Or
Tel Aviv University

Fig. 1 Snapping allows easy pasting of mesh parts by loosely posi-
tioning them close to their target, and letting the system snap them
together.

1 Introduction

The creation of digital geometric objects for graphics, en-
gineering, games or motion pictures is a difficult and of-
ten expensive process. Despite recent impressive progress
in automatic modeling and reconstruction, a fair amount of
geometric processing is always done manually. Experts use
modeling software for the design and creation of 3D mod-
els. However, such software require meticulous work, and
must be driven by a professional skilled artist or engineer
to produce correct and visually pleasing results. Recently, a
growing number of works have been targeted at simplifying

2 Andrei Sharf et al.

the interaction and manual manipulation of 3D objects to en-
able simple and interactive editing by non-professionals [15,
13,14,22].

In this work we focus on a user interface operation borrowed
from computer editing applications – the cut-and-paste op-
eration. In the context of direct manipulation, cut-and-paste
is used as a metaphor for cutting and connecting mesh parts
and surfaces. However, in current mesh editing application
this can become a complicated procedure. The user is re-
quired to carefully cut a designated surface-part, place it
near the other surface in an exact position, define the cor-
respondence between boundary parts, stitch them together,
and possibly add or remove outliers manually. These oper-
ations may need to be repeated several times to generate a
natural merge between the two surfaces. Our goal is to define
an easy-to-use tool which supports cut-and-paste of surface
meshes as a simple, natural and intuitive operation.

To support simple cutting, we present a simple mesh cut-
ting tool based on a graph-cut procedure. This tool enables
the user to separate parts from a mesh simply by drawing a
cutting stroke even from a single viewpoint. The stroke path
is projected on the mesh and automatically closed to form
a loop. This loop is used to define the approximated area
of the cut. The final cut is created using a feature-sensitive
graph-cut algorithm.

To support simple pasting, we turn to a very useful and ef-
fective notion in graphics applications - the notion of snap-
ping. Snapping is often used to alleviate the user’s need to
exactly position shapes before connecting them. Using snap-
ping, shapes are automatically attracted to specific locations
(grid) or to other shapes. By extending this notion to 3D
surfaces, our tool snaps two mesh parts together with a lo-
cal graceful warp that respects their initial relative position.
Our snapping tool allows even little kids to connect 3D mesh
parts easily (Figure 2): the user chooses a mesh part, loosely
drags and rotates it to an approximate position close to the
target mesh and releases. The part automatically snaps to the
target mesh. There is no need for precise positioning of parts
in 3D, no need to delicately separate mesh parts and define
exact boundaries and no need to set or tune any parameters.
Snapping merges gracefully any two valid mesh parts with
boundaries, as long as they have an overlapping region. We
refer to such overlapping region as the snapping region.

In effect, snapping involves two parts: relative global posi-
tioning and local blending of the two surface meshes. We use
point-wise local rigid transformations with varying support
to achieve both tasks. We base our technique on the clas-
sic iterative closest point (ICP) algorithm which supports
rigid body transformations, and extend it toward a more gen-
eral transformation by defining a novel soft-ICP algorithm.
While the original ICP algorithm searches for a global trans-
formation to register two point sets, we use a series of global-
to-local transformations with differing supports for position-
ing and blending the two objects.

Fig. 2 Mesh-snapping allows even eight years old children to compose
3D mesh parts easily.

The support neighborhood size, defining the local transfor-
mation of each point, changes depending both on the posi-
tion of the point on the surface and on time (i.e. the iteration
number). Consequently, the transition between global to lo-
cal, thus from rigid to soft is defined in a gradual manner
across the surface and through the iterations. Points which
are far from the snapping region undergo a more rigid dis-
placement common to larger neighborhoods. Points which
are closer to the snapping region move with locally rigid
transformations that together form a soft-warp of the sur-
face at the region where the two surfaces overlap. This series
of transformations creates a smooth transition that scales,
aligns and merges the two surfaces together.

Once the two surfaces are snap together, the overlapping re-
gion connecting the two parts is re-meshed based on [25]
to create one valid mesh. Examples of snapping of general
cylindrical shapes can be seen in Figure 1, where the Feline
is transformed into a Griffin by loosely pasting parts of an
eagle’s head and legs. Disk-like shapes are seen in Figure 9,
where the sphinx face is replaced. More examples can be
found in the results section and in the video attached.

The main contributions of this paper are as follows:

– We extend the cut-and-paste notion to 3D meshes.
– We define a snapping method for two mesh parts to assist

easy pasting and composition of 3D objects. The snap-
ping solves both positioning and blending of the two sur-
faces by defining a novel soft-ICP algorithm.

– We define an easy mesh cutting tool based on graph cuts.

2 Background and Related Work

Cut-and-paste is a user-interface paradigm for transferring
data pieces of any kind from a source to a destination. The
cut-paste notion is derived from the traditional practice in
manuscript editing in which paragraphs were literally cut

SnapPaste: An Interactive Technique for Easy Mesh Composition 3

from a page with scissors and physically pasted onto another
page. In software system this paradigm has become so uni-
versal and general, that most users expect to find it in any
editing and modeling application. Although the basic idea
of extracting data from one part and inserting it back into
another is simple, there is a need to define the meaning of
cutting and pasting depending on the data and its represen-
tation. This is especially true when the data is as complex as
3D objects in mesh representation.

Constructive solid geometry (CSG) representation uses Boolean
operations such as subtraction to support cutting and union
to support pasting. Several works have extended these opera-
tions to boundary surfaces using different implicit represen-
tations. [29] use analytic primitives or skeletal implicit rep-
resentation. Point-based representations and level-sets were
used in [21], moving least square surfaces in [31], and parti-
tion of unity in [23]. The approach presented in [12] is based
on voxelization, volumetric minimal cuts and stitching to
compose meshes. Nevertheless, most available graphics ob-
jects are still defined using explicit meshes where boolean
operations and cut-and-paste are more difficult. Moreover,
the relative positioning of the two blended parts still remains
a difficult task, regardless of the representation.

In [4] boolean operations on explicit multi-resolution sur-
faces are presented, but with no blending or smoothing be-
tween parts. Later, in [5] a cut-and-paste operator is defined
mostly for details of implanting and patch embedding, rather
than composing whole mesh parts. Other works on mesh
editing deal with direct manipulation and mesh-deformation
operators [18,2,1,26]. Nevertheless, in these works mesh
composition usually needs delicate manual intervention. For
example in [30] manual intervention is needed to achieve
correspondence between boundaries. In [27], additional steps
of registration, possibly local re-meshing and zipping (filling
in gaps) are required. Similarly, in the system for modeling-
by-example [11] the two major challenges in their compo-
sition, positioning and attachment, are dealt with by global
rigid positioning using volumetric ICP, and stitching between
two predefined conforming (corresponding) contours.

Other approaches are based on joint-parameterization of lo-
cal regions on the source and target meshes. In [10], pasting
of a source mesh (possibly with high genus) is performed
by defining a joint base parameterization to the source and
target regions, replacing the base mesh region in the target
with the source base region and then transferring the details.
In [16] a combined parameterization is built, when the cor-
respondence is defined using ICP, and the pasting operation
is implemented by blending the two meshes using morphing
between the source and target on the target mesh.

For interactive mesh cutting, modeling applications either
allow explicit specification of the cut position or the use
of a lasso tool which needs specific view directions to suc-
ceed. Intelligent scissoring was presented in modeling-by-
example [11] where a stroke is painted directly on the mesh.
This stroke is used to define a neighborhood where the real

cut is then completed to form a loop using a cost function
and a variant of Dijkstra algorithm. Our cutting algorithm
uses a similar method to close the loop between the two end-
points of the initial stroke. However this is only done to de-
fine two separate regions on the mesh. The actual cut is de-
fined using a graph cut between the two regions, adhering to
surface features. Graph cuts have been used extensively on
images for segmentation and feature extraction [6,20] and
in [17] for automatic partitioning of meshes. A different in-
telligent scissoring tool is proposed in [19], where a 2D line
is used to define a plane that cuts the mesh to create an ini-
tial loop. The position of this loop is then refined using a 3D
snake. However, sketching a stroke directly on the mesh has
more flexibility than a 2D plane, and advancing an active
contour can be more complicated than finding a graph cut

Our work seeks to define a simpler and more effective inter-
active tool for easy cut-and-paste in the spirit of a smart and
simple user interface for modeling. Such a tool must support
easy mesh cutting and address both the positioning and the
blending problems when pasting two surface parts together.
We focus our efforts on the ease-of-use of such a tool, where
snapping replaces the usual meticulous work of positioning
and connecting two meshes, with an interactive technique
for pasting.

The rest of the paper is composed as follows. In Section 3
we present an overview of our Soft-ICP algorithm for snap-
ping, followed by Sections 4 to 6 which describe the Soft-
ICP algorithm details. Section 7 describes our simple cutting
tool and in Section 8 we present our data-structure. We show
some results and conclude in Sections 9 and 10.

3 Soft-ICP Algorithm Overview

The definition of our easy pasting tool is based on the abil-
ity to automatically snap two mesh parts and compose a sin-
gle one. Snapping involves both calculating the relative posi-
tion (global alignment) of the composed parts and creating a
blend (local deformation) between them. Both of these tasks
are addressed by using a new soft-ICP algorithm (Figure 3).
The goal of the original Iterative Closest Point (ICP) algo-
rithm is to find a registration between two point sets [7,3].
The ICP algorithm proceeds in an iterative manner using the
following steps:

1. Find a point-wise correspondence between the sets.
2. Compute and apply registration on the two sets.
3. Check error threshold, and return to first step if needed.

The correspondence and registration steps search for a rigid
transformation, including translation and rotation, that re-
duces the sum-of-squared distances between point pairs. The
many variants of the basic algorithm differ in the method
for selecting and matching the points, the weighting of the
corresponding pairs, the use of pair-rejection criteria, the er-
ror metric used and the minimization technique of the er-

4 Andrei Sharf et al.

(a) (b) (c) (d)

Fig. 3 The Soft-ICP algorithm: (a) Starting with one shape placed near another with an overlap, correspondence is computed in the snapping
region (gray region). (b) Transformations are computed point-wise (example shows for 3 points), based on local supporting neighborhoods
(colored stripes). (c) The algorithm iteratively computes correspondence and transformations on both shapes until they gracefully blend together.
Note the elastic deformation inside the snapping region while details outside rigidly align. (d) For comparison we show the result of applying
the original ICP algorithm on the two shapes.

ror metric [24]. Nevertheless, most methods still look for
one global transformation that registers the two point sets.
Our approach is similar to the methods introduced in [28,
9]. These methods use a local ICP algorithm for the regis-
tration of anatomical 3D data-sets. However, in these works
two full surfaces are registered and not sub-parts, and static
Euclidean neighborhoods are used. Using such algorithms
for combining mesh parts will not solve both positioning and
blending problems.

The Soft-ICP algorithm solves both global positioning and
blending of the two objects simultaneously. The basic idea
is that at each iteration, each point pi of the mesh is trans-
formed by its own individual transformation Ti. This trans-
formation is computed using similar calculations as ICP, but
on a local support around pi denoted: N(pi) (Figure 3(b)).
The overall effect of applying a different transformation to
each point individually is, that the surface defined by the
points can undergo non-rigid (elastic) deformations. Since
neighboring points have overlapping local support, they un-
dergo similar transformations, creating a smooth deforma-
tion across the surface ((Figure 3(b-c))). We utilize this type
of deformation for snapping the two surfaces together.

The pseudocode of the soft-ICP algorithm is presented in
Figure 4. Note that the algorithm is defined for snapping one
mesh MA to another MB. In practice, we exchange the roles
of MA and MB after each iteration, creating an almost sym-
metric snapping procedure.

4 Snapping Region and Correspondence

The Soft-ICP technique depends on the correspondence among
points on both surfaces. To find correspondence, it is impor-
tant that the surfaces overlap since the correspondence is de-
fined in the overlapping region (Figure 3(a)). If there is too
little or no overlap between the meshes, i.e. not enough cor-
respondence, snapping is not performed. This in turn, will
drive the user to continue dragging or rotating the mesh-parts
until they overlap and snap.

Procedure: snap MA to MB
Let SA and SB be the snapping regions

of MA and MB respectively
Loop until convergence {

Find correspondence φ of SA to SB
For each point pi in MA {

Find the local neighborhood N(pi)
Calculate the transformation Ti

based on φ |N(pi)}
For each point pi in MA {

Apply Ti to pi
}

}

Fig. 4 The Soft-ICP pseudocode.

To define a snapping region, we assume that the two meshes
are valid manifolds and contain two designated boundary
loops. Note that in the case of closed meshes with no bound-
aries an additional cutting step should be performed. Fur-
thermore, for meshes with multiple boundaries, we take the
closest pair (one from each mesh) to be the designated bound-
ary loops.

For each mesh, we find the set of closest points to the other
shape boundary loop. Next, we compute the geodesic dis-
tance for each point in the set to their own boundary loop.
We define the snapping region size R as the maximum of the
geodesic distances. Thus, the sub-mesh within R geodesic
distance from the boundary loop is defined as the snapping
region. Only points within the snapping regions of the two
meshes are used for correspondence computation (see Fig-
ures 3(a) and 6).

Let SA and SB be the two snapping regions on the two meshes.
For each point pa ∈ SA the corresponding point pb ∈ SB is
defined as: (∀q ∈ SB,D(pa, pb) < D(pa,q)). The distance
D(pa, pb) is a weighted sum of three terms:

w1||pa− pb||+w2 arccos(Na ·Nb)+w3(ca− cb)

The first term is the Euclidean distance between the points.
The second term represents the angle difference of the nor-

SnapPaste: An Interactive Technique for Easy Mesh Composition 5

Fig. 5 Differences in the speed of the pasting gesture: colors of the
heads denote the dragging speed, the darker the color, the more slowly
the positioning is. The snapping process has more freedom in relative
positioning as the pasting is faster. Dragging the shapes slowly causes
the shapes to merge with little change in the global position.

mals Na and Nb at the points, and the third is the difference
in the local Gaussian curvatures ca,cb at the points. The
weights of the three terms are user defined and in practice
we use w1 = 0.6,w2 = 0.2,w3 = 0.2. This means that only
point-pairs which are both close and similar in local shape
features are matched.

5 Supporting Neighborhoods

The transformation Ti of each point pi is computed based on
a local geodesic neighborhood around pi. We define the geo-
desic neighborhood of pi: Nr(pi), as the set of mesh vertices
that are within r geodesic distance from pi. Thus, for com-
putation of Ti, we consider only the local correspondence φ
that is inside the geodesic neighborhood Nr of pi: φ |Nr(pi)
(Figure 3(b)).

These supporting neighborhoods Nr(pi) change their size r
depending on the distance of the points from the snapping
region and on the iteration. For each point pi we start from a
maximal neighborhood that includes all φ . As the iterations
progress, the neighborhood of the point is reduced as a func-
tion of both iteration t and the proximity of the point to the
snapping region (its boundary loop). For a point pi the size
r of Nr(pi) is calculated as follows:

ri = R · e−[(t·k/di)2]

Where R is the snapping region size, t is the iteration (1 ≤
t ≤ tmax) and di is the geodesic distance of pi to the snapping
region (its boundary loop). Note that for points outside the
snapping region, we additionally offset ri with their distance
to the snapping region. Thus, the supporting neighborhood
is always contained (fully or partially) inside the snapping
region (in Figure 3(b) the yellow stripe).

Fig. 6 Snapping region (left-top before and left-bottom after snap-
ping), is remeshed (right) while constraining its boundaries to conform
to connectivity of each mesh, creating one valid mesh after the snap.

Points which are far from the snapping region have larger
neighborhoods, hence their transformation is mostly a global
rigid one. The closer the point is to the snapping region,
the smaller its neighborhood, thus resulting in more locally-
rigid transformation. The displacements of the meshes are
a series of rigid-to-elastic transformations which depend on
time (iterations) and the geodesic distance to the snapping
region (Figure 3(c)).

The elasticity constant k (1 ≤ k ≤ kmax) governs the trade-
off between movement and accuracy. It is used to distin-
guish between slow pasting gestures, when high accuracy
is needed (k = kmax) and fast pasting gestures, when large
movement is allowed (k = 1). The interactive snapping process
has more freedom in the relative positioning (rigid align-
ment) as the interactive pasting is faster. Aligning the shapes
slowly causes the shapes to merge with little change in the
global position, as indicated by the brown heads in Figure 5.

6 Transformation Calculation

Once correspondence φ and local neighborhoods Nr(pi) are
defined, we compute the transformation Ti =(R,T ,S) based
on φ |Nr(pi); First, scale S is found using the oriented bound-
ing boxes of Nr(pi) and its corresponding points. Translation
T among the two point sets is found using center-of-mass
alignment. Finally rotation R is determined using standard
SVD minimization:

∑
<pa,pb>∈φ |Nr(pa)

||(R(pa)+T)− pb||2

To create a softer transition and find a better fit between the
surfaces we apply the soft-ICP transformations in a gradual
manner. In the first iterations we scale, translate and rotate

6 Andrei Sharf et al.

(a) (b) (c) (d)

Fig. 7 Cutting a mesh: (a) The user marks a path on the mesh (b) The
path is automatically closed (c) The min-cut separates the mesh into
two parts (d) The mesh is cut.

(using quaternions) only a portion (li) of the way. As itera-
tions progress (and the surfaces get closer), this portion in-
creases locally until we use the full transformation:

li = t/tmax

The snapping algorithm results in the two shape meshes fully
overlayed in the snapping regions. To create a valid mesh,
a post processing step of local re-meshing is required for
the two overlayed meshes. We used the re-meshing algo-
rithm with boundary constraints from [25] (Figure 6). Nev-
ertheless, any local re-meshing algorithm can be used to re-
triangulate the snapping regions connecting the two meshes.

7 Mesh Cutting

To complete our cut-and-paste framework for 3D meshes we
have developed a simple and effective cutting tool. The main
idea behind our approach, is to assist the user to create cor-
rect and effective cuts while still preserving a simple stroke-
based natural user interface.

Our mesh cutting algorithm has three major parts (Figure 7):
1. Loop completion, 2. Graph cut, and 3. Cut smoothing. To
start a new cut, the user “paints” a stroke near the desired
position of the cut. The positions of the mouse are projected
onto the surface and a set of faces are created to represent
the stroke.

Using the longest component of consecutive faces of the
stroke denoted by S, the first step is to complete a whole
loop from its two end-faces. We use Dijkstra shortest path
algorithm using the following cost function between neigh-
boring faces fi and f j:

c(fi, f j) = g(fi, f j)+ ID(f j,S)+ND(n j,S)

Where g(fi, f j) is the geodesic distance between fi and fb.

ID(f j,S) is the inverse geodesic distance from f j 6∈ S to the
stroke S:

ID(f j,S) = ∑
f∈S

1
g(f , f j)

Fig. 8 Three levels of the GeoTree anisotropic patch hierarchy on the
camel.

The inverse distance favors faces that are distant from the
stroke.

ND(f j,S) is the normal distance from a face f j 6∈ S with
normal n j to the stroke S. We compute the normal cone of
all faces in S denoted by its central vector v and opening
angle α .

ND(f j,S) =

{
1 if n j · v≥ cos(α)

n j ·v+1
cos(α)+1 otherwise

The normal distance favors faces whose normal is generally
facing in the other direction from the stroke.

The computed loop is used to designate two distinct mesh
sides and a “fuzzy region”, inside which the real cut will
pass. Thus, we extend the initial loop of faces to a width of
n triangles to both sides (n is the user defined stroke width).
The faces at the boundaries of the fuzzy region in each side
are marked as source and sink respectively.

Next, a weighted graph on the faces is built to represent the
fuzzy region. The edge weight to the source and sink is the
geodesic distance to them, and the edge weight between ad-
jacent faces is the geodesic and normal difference of these
faces. Finding a minimum cut in this graph [6] separates the
mesh into two parts. Finally, before cutting we apply a sim-
ple smoothing step which locally switches the membership
of triangles that create sharp angle edges in the cut.

8 The GeoTree Data Structure

Both cut and paste operations use queries that need to re-
trieve geodesic neighborhoods on the mesh. In a naive im-
plementation, finding the geodesic neighborhood of a vertex
can take an order of the number of vertices. Using many
such queries may lead to quadratic algorithm complexity.
For a more efficient implementation, we define a hierarchi-
cal search structure, which we call the GeoTree, supporting
fast neighborhood retrieval given a geodesic radius.

The GeoTree is a hierarchical patch structure built on the
mesh. To create the coarsest level of the hierarchy we use a
variant of Lloyd algorithm (e.g., k-means) similar to [8] to

SnapPaste: An Interactive Technique for Easy Mesh Composition 7

Fig. 9 Sphinx’s face lift. A part of the Sphinx’s face is loosely cut out and replaced (left). Snapping aligns and merges the replacing part in a
natural manner (right).

partition the mesh into k anisotropic patches of similar size.
This creates anisotropic feature-sensitive neighborhoods which
are more coherent to surface attributes. As will be shown,
both cutting and snapping gain from this feature.

To build a full matrix of geodesic distances between the
patches in the coarsest level we compute all-pairs shortest
paths between the centers of the patches. Each patch is then
partitioned recursively to four, creating a quadtree structure
on the surface (Figure 8). At each level, we compute for each
node (i.e., each patch) the distances to the m closest patches
only, and store them in the node.

The geodesic neighborhood of a point p is approximated by
the union of patches collected from the GeoTree. Given a
radius r, and a point p, we find the leaf node in the GeoTree
that contains p. If the radius r is smaller than the m-furthest
patch distance, we collect all patches whose distance is smaller
than r to compose the geodesic neighborhood of p. If the ra-
dius r is larger than the m-furthest patch, we go up one level
in the hierarchy and repeat the process. At topmost level, we
use the full matrix of the patch distances.

We utilize our GeoTree hierarchy to accelerate the cutting
process. Instead of using all triangles of the mesh we use an
adaptive cut in the GeoTree. Far from the fuzzy region we
use the coarse levels of the GeoTree and build the weighted
graph using GeoTree patches. As we get closer to the stroke
we use finer levels of the GeoTree patches and finally very
near and inside it we use the triangles.

In the Soft-ICP algorithm, in each iteration we calculate φ
once, but for each point we need to find φ |Nr (Section 5).
Using the GeoTree, this neighborhood search is supported
in an efficient manner. Furthermore, since anisotropic neigh-
borhoods are more coherent to surface attributes, φ |Nr has a
bias towards similar features matchings-pairs.

9 Results

We have applied our snapping algorithm to various types of
3D objects including scanned meshes, CAD and artificial
meshes. We used a Pentium-4, 2.4 GHz, 1G memory with
Nvidia GeForce-4800 card. Results show high visual qual-
ity with an interactive rate of not more than a few seconds
per operation (see Table 1, and the supplied video).

Model Number Number Snapping
faces vertices time

hand+camel 96,394 41,856 3.5 sec
hand+flamingo 79,498 37,954 2.7 sec
hand+duck 71,594 35,956 2.4 sec
hand+dinopet 67,870 34,082 2.2 sec

Table 1 Timing results of snap-paste for the puppet show example.
The differences depend on the snapping region size and number of soft-
ICP iterations. Other pasting examples have similar timing of order of
only few seconds.

For very large meshes (millions of triangles), we have de-
veloped two efficient accelerations: The first, uses GeoTree
patches instead of triangles far from the snapping region.
The second, restricts the Soft-ICP computation within a con-
stant distance from the snapping region. Mesh parts that are
further away from this distance will transform using one
global rigid transformation.

Due to our anisotropic GeoTree structure (Section 8), our
algorithm works in a feature sensitive manner, guaranteeing
that the shapes are snapped along similar features. Figure 10
shows the snapping of the Gargoyle to the bow of a ship.
While the squared like base of the Gargoyle is matched and
snapped to the bow, the features of the models itself undergo
only little deformation due to nearly global transformations.

Figure 11 shows some results of snapping multiple parts to-
gether to create new diverse models. In the creation process,
no fine cutting or exact positioning of the shapes is required.
The objects were loosely dragged in proximity to one an-
other and released, and the snapping process took only a few
seconds each time.

Our technique can also handle complex topological shapes
and snap multiple boundaries at once. For example, in Fig-
ure 12, we compose the tail of the Feline, which contains
a hole and two boundaries, to its neck. This simultaneous
snapping can only be achieved by a technique that treats the
surface locally as a soft body and does not require exact po-
sitioning. The reason for this is that it is unlikely that the two
boundaries can be fit simultaneously.

8 Andrei Sharf et al.

Fig. 10 Snapping the Gargoyle to the bow of a ship.

Fig. 11 Snapping multiple parts together creates a repertoire of new
models in a matter of seconds. The mythological Chimera, a puppet
show and a tree created of various parts.

10 Conclusions

In this paper we introduced a cut-and-paste tool which is
designed for non-professionals. In our framework the user
does not need to cut nor to position the parts precisely to
compose them. Instead, the system automatically snaps to-
gether parts which are overlapping in a graceful manner. We
presented numerous results obtained using these tools with
very little user effort. The core of our tool is a snapping tech-
nique based on a soft-ICP algorithm. Soft-ICP consists of a
series of point-wise locally supported rigid transformations.
The local support varies both in time and in space, defining a
series of global to local, and a rigid to elastic transformation
that simultaneously solve both the global positioning and the
local blending problems.

There are several possible extensions to this work. The de-
finition of a snapping operation when no overlap exists is
a possible extension. Another, is the definition of an opera-
tion semantics when one or both of the snapped parts do not
contain boundary loops. We also believe that the soft-ICP al-
gorithm can be beneficial for other related applications. This
includes hole-filling, repairing polygonal models, and sur-
face registrations. Additionally, we would like to continue
pursuing easy-to-use tools for interactive modeling, to facil-
itate modeling for both professional and amateurs.

Acknowledgements We would like to thank Carlos E. Scheidegger,
Shahar Fleishman and Claudio Silva for providing us the code for lo-
cal triangulation with boundary constraints in our remeshing step. This
work was supported partly by a grant from the Israeli Ministry of Sci-
ence.

References

1. Angelidis, A., Wyvill, G., Cani, M.P.: Sweepers: Swept user-
defined tools for modeling by deformation. In: Shape Modeling
International, pp. 63–73 (2004)

2. Bendels, G.H., Klein, R.: Mesh forging: editing of 3d-meshes us-
ing implicitly defined occluders. In: Proceedings on ACM Sym-
posium on Geometry Processing, pp. 207–217 (2003)

3. Besl, P.J., McKay, N.D.: A method for registration of 3-d shapes.
IEEE Transactions on Pattern Analysis and Machine Intelligence
14(2), 239–256 (1992)

SnapPaste: An Interactive Technique for Easy Mesh Composition 9

Fig. 12 Snapping multiple boundaries simultaneously can only be achieved by a technique that treats the surface locally as a soft body and does
not require exact positioning.

4. Biermann, H., Kristjansson, D., Zorin, D.: Approximate boolean
operations on free-form solids. In: Proceedings of ACM SIG-
GRAPH 2001, pp. 185–194 (2001)

5. Biermann, H., Martin, I., Bernardini, F., Zorin, D.: Cut-and-paste
editing of multiresolution surfaces. In: Proceedings of ACM SIG-
GRAPH 2002, pp. 312–321 (2002)

6. Boykov, Y., Jolly, M.: Interactive graph cuts for optimal boundary
& region segmentation of objects in n-d images. In: International
Conference on Computer Vision (ICCV), pp. 105–112 (2001)

7. Chen, Y., Medioni, G.: Object modelling by registration of multi-
ple range images. Image and Vision Computing 10(3), 145–155
(1992)

8. Cohen-Steiner, D., Alliez, P., Desbrun, M.: Variational shape ap-
proximation. ACM Transactions on Graphics pp. 905–914 (2004)

9. Feldmar, J., Ayache, N.: Rigid, affine and locally affine registra-
tion of free-form surfaces. The International Journal of Computer
Vision 18 (1996)

10. Fu, H., Tai, C.L., Zhang, H.: Topology-free cut-and-paste editing
over meshes. In: Proceedings of the 3rd International Conference
on Geometric Modeling and Processing (2004)

11. Funkhouser, T., Kazhdan, M., Shilane, P., Min, P., Kiefer, W., Tal,
A., Rusinkiewicz, S., Dobkin, D.: Modeling by example. ACM
Transactions on Graphics (SIGGRAPH 2004) pp. 652–663 (2004)

12. Hassner, T., Zelnik-Manor, L., Leifman, G., Basri, R.: Minimal-
cut model composition. In: International Conference on Shape
Modeling and Applications (SMI’ 05), pp. 72–81 (2005)

13. Igarashi, T., Matsuoka, S., Tanaka, H.: Teddy: a sketching inter-
face for 3d freeform design. In: Proceedings of ACM SIGGRAPH,
pp. 409–416 (1999)

14. Igarashi, T., Moscovich, T., Hughes, J.F.: As-rigid-as-possible
shape manipulation. ACM Trans. Graph. 24(3), 1134–1141 (2005)

15. James, D.L., Pai, D.K.: Artdefo: accurate real time deformable
objects. In: Proceedings of ACM SIGGRAPH, pp. 65–72 (1999)

16. Kanai, T., Suzuki, H., Mitani, J., Kimura, F.: Interactive mesh fu-
sion based on local 3d metamorphosis. In: Graphics Interface, pp.
148–156 (1999)

17. Katz, S., Tal, A.: Hierarchical mesh decomposition using fuzzy
clustering and cuts. ACM Transactions on Graphics (Proceedings
SIGGRAPH 2003) 22(3), 954–961 (2003)

18. Kobbelt, L., Campagna, S., Vorsatz, J., Seidel, H.P.: Interactive
multi-resolution modeling on arbitrary meshes. In: proceedings
ACM SIGGRAPH 98, pp. 105–114 (1998)

19. Lee, Y., Lee, S., Shamir, A., Cohen-Or, D., Seidel, H.P.: Mesh
scissoring with minima rule and part salience. Computer Aided
Geometric Design 22(5), 444–465 (2005)

20. Li, Y., Sun, J., Tang, C.K., Shum, H.Y.: Lazy snapping. ACM
Trans. Graph. 23(3), 303–308 (2004)

21. Museth, K., Breen, D.E., Whitaker, R.T., Barr, A.H.: Level set
surface editing operators. In: Proceedings of ACM SIGGRAPH
2002, pp. 330–338 (2002)

22. Nealen, A., Sorkine, O., Alexa, M., Cohen-Or, D.: A sketch-based
interface for detail-preserving mesh editing. ACM Trans. Graph.
24(3), 1142–1147 (2005)

23. Ohtake, Y., Belyaev, A., Alexa, M., Turk, G., Seidel, H.P.: Multi-
level partition of unity implicits. ACM Transaction on Graphics
22(3), 463–470 (2003)

24. Rusinkiewicz, S., Levoy, M.: Efficient variants of the icp algo-
rithm. In: Third International Conference on 3D Digital Imaging
and Modeling (3DIM) (2001)

25. Scheidegger, C., Fleishman, S., Silva, C.: Triangulating point set
surfaces with bounded error. In: Eurographics Symposium on
Geometry processing, pp. 63–72 (2005)

26. Singh, K., Fiume, E.: Wires: a geometric deformation technique.
In: Proceedings of SIGGRAPH, pp. 405–414 (1998)

27. Sorkine, O., Lipman, Y., Cohen-Or, D., Alexa, M., Rössl, C., Sei-
del, H.P.: Laplacian surface editing. In: Proceedings of the Euro-
graphics/ACM SIGGRAPH symposium on Geometry processing,
pp. 179–188 (2004)

28. Thirion, J.P.: Fast non-rigid matching of 3d medical images. In:
Proceedings of the Conference on Medical Robotics and Com-
puter Assisted Surgery (MRCAS’95) (1995)

29. Wyvill, B., Galin, E., Guy, A.: Extending the csg tree. warping,
blending and boolean operations in an implicit surface modeling
system. Computer Graphics Forum 18(2), 149–158 (1999)

30. Yu, Y., Zhou, K., Xu, D., Shi, X., Bao, H., Guo, B., Shum,
H.Y.: Mesh editing with poisson-based gradient field manipula-
tion. ACM Trans. Graph. 23(3), 644–651 (2004)

31. Zwicker, M., Pauly, M., Knoll, O., Gross, M.: Pointshop 3d: an
interactive system for point-based surface editing. In: Proceedings
of SIGGRAPH, pp. 322–329 (2002)

