
Characterizing Structural Relationships in Scenes Using Graph Kernels

Matthew Fisher∗ Manolis Savva† Pat Hanrahan‡

Abstract

Modeling virtual environments is a time consuming and expensive
task that is becoming increasingly popular for both professional and
casual artists. The model density and complexity of the scenes rep-
resenting these virtual environments is rising rapidly. This trend
suggests that data-mining a 3D scene corpus to facilitate collabora-
tive content creation could be a very powerful tool enabling more
efficient scene design. In this paper, we show how to represent
scenes as graphs that encode models and their semantic relation-
ships. We then define a kernel between these relationship graphs
that compares common virtual substructures in two graphs and cap-
tures the similarity between their corresponding scenes. We apply
this framework to several scene modeling problems, such as find-
ing similar scenes, relevance feedback, and context-based model
search. We show that incorporating structural relationships allows
our method to provide a more relevant set of results when compared
against previous approaches to model context search.

Keywords: 3D model search, scene modeling, graph kernel, struc-
tural relationships

1 Introduction

A growing demand for massive virtual environments combined
with increasingly powerful tools for modeling and visualizing
shapes has made a large number of 3D models available. These
models have been aggregated into online databases that other artists
can use to build up scenes composed of many models. Numerous
methods for querying a model database based on properties such as
shape and keywords have been proposed, the majority of which are
focused on searching for isolated objects.

When a scene modeler searches for a new model, an implicit part of
that search is a need to find objects that fit well within their scene.
Understanding which models best fit into a scene requires devel-
oping a way to compare the relevant parts of the supporting scene
against scenes already in the database. The focus of this work is
on representing scenes in a way that captures structural relation-
ships between objects, such as coplanar contact or enclosure, and
can enable this type of comparison.

Scene comparison is a very challenging problem because scenes
contain important structure at many different resolutions. The chal-
lenge of comparing highly structured data occurs in a wide variety
of fields, such as web search, protein function prediction, and image
classification. In all of these problems, attempting to directly com-
pare the finest-level data is rarely successful. Instead, the data is of-
ten transformed into a new representation that enables the compari-
son of important features. In this work, we will show how to trans-
form scenes into a relationship graph whose nodes represent se-
mantically meaningful objects or collections of objects, and whose
edges represent different types of relationships between nodes. This
graph representation greatly facilitates comparing scenes and parts
of scenes.

One of the simplest approaches to scene comparison is to directly
compare the tags artists have provided for a scene or the name at-

∗mdfisher@stanford.edu
†msavva@stanford.edu
‡hanrahan@cs.stanford.edu

Figure 1: A set of scenes in the Google 3D Warehouse with “living
room” in their scene name. Many properties of a scene are not
reflected well in the scene name. Understanding the relationships
between scenes requires a method to compare different aspects of
the scene’s internal structure. All images in this paper are used
with permission from Google 3D Warehouse.

tached to the scene. Unfortunately, while a scene name can provide
useful information about the scene’s category, it cannot easily ex-
press the stylistic variation within these categories. Likewise, it
is challenging for the scene tags to encompass all the interesting
substructures within the scene. In Figure 1, we show nine scenes
retrieved from Google 3D Warehouse using a keyword search for
“living room”. A user issuing this query because they were looking
for models to add to an entertainment center would only be pleased
with three of these scenes — and doing a keyword search for “en-
tertainment center” will miss all of these scenes entirely. These
problems all demonstrate the need for a more effective way to char-
acterize and compare the substructure of scenes.

In this work we will describe how we can take a 3D scene and
extract a set of spatial relationships between objects in the scene.
We show how we can use this set of spatial relationships to de-
fine a positive-definite kernel between any two 3D scenes. We use
this kernel to execute several different types of queries for complete
scenes that incorporate the semantic relationships between objects.
We show how our scene kernel can also be used to search for mod-
els that belong in a particular context and have a specified spatial
relationship to other objects. For example, a user could issue a
search for models that can be hung on a wall in the bedroom they
are modeling.

2 Background

2.1 3D Model Search

Many techniques have been developed for querying 3D model
databases [Funkhouser et al. 2003; Chen et al. 2003]. Two com-
mon approaches are to use a keyword search, or for the user to
ask for models that are similar to a 3D model they have already
found [Funkhouser and Shilane 2006]. These similarity queries
usually work by reducing the models to a feature space that can
be readily compared to produce a distance metric between any two



models [Tangelder and Veltkamp 2008]. Although these methods
are not designed for comparing entire scenes, determining the sim-
ilarity between two isolated models is an important subroutine for
a scene comparison algorithm.

Another approach to 3D model search uses a partially modeled
scene as context [Fisher and Hanrahan 2010]. In this work, the user
places a query box in the scene and the algorithm searches for mod-
els that belong at this location. Models in the database are ranked
by the similarity of their spatial offsets to objects in the supporting
scene. Only pairwise relationships between models are considered.
Because this method uses only geometric relationships between ob-
jects, it is very sensitive to the relative position of objects in scenes.
One goal of our work is to develop context-based search queries
that incorporate the semantic relationships between objects and can
reflect complex scene properties not well captured by pairwise ge-
ometric comparisons between objects.

2.2 Scene Comparison

A small number of attempts have been made at comparing 3D
scenes. One approach is to partition the mesh of each object into a
set of regions, connect adjacent regions, and then use the spectral
decomposition of the resulting graph Laplacian matrix to compare
scenes [Paraboschi et al. 2007]. This method is sensitive to the
mesh segmentation and was not tested on scenes with a large num-
ber of objects. Also, because their focus was on manifold meshes
it does not map well to the datasets we explore. Nevertheless, it is
similar to our approach in that it first reduces scenes to a graph and
then compares two scenes using properties of their graphs.

A problem that has many parallels to scene comparison is image
comparison, where the goal is to relate two images based on their
semantic content. One approach to image comparison is to first
segment the image into regions and then construct a graph by con-
necting regions that are touching [Harchaoui and Bach 2007]. Two
regions are compared by using their color histograms. The images
can then be compared by looking at their respective segmentation
graphs. Our approach can be seen as the natural extension of this
idea to 3D scenes: we first segment our scene into meaningful ob-
jects, then insert edges that represent relationships between pairs of
objects.

2.3 Graph Kernel

Kernel-based methods for machine learning have proven highly ef-
fective because of their wide generality. Once a kernel is defined
between the entities under consideration, a wide range of learning
algorithms such as support vector machines can be applied [Cris-
tianini and Shawe-Taylor 2000]. In addition, techniques such as
multiple kernel learning can be used to intelligently combine re-
sults from a large number of kernels [Bach et al. 2004].

There is considerable work on defining kernels between data types
that are highly structured [Shawe-Taylor and Cristianini 2004]. In
particular, several different kernels between two graphs have been
proposed [Kashima et al. 2004]. These have been successfully ap-
plied to a variety of problems such as molecule classification [Mahé
et al. 2004] and image classification [Harchaoui and Bach 2007].

In its most general form, a graph kernel takes as input two graphs
with labeled nodes and edges, a kernel knode(na, nb) defined be-
tween node labels and a kernel kedge(ea, eb) defined between edge
labels, and returns a non-negative real number reflecting the sim-
ilarity between the two graphs. The node and edge kernels used
depend on the types of labeling used and are application specific.
In molecular comparisons, they are often simple kernels that use

containment encircled circlement
contact surface contact support
attachment adhesion hanging
piercing impaled proximity
above below vertical equality
horizontal support front behind
viewport equality

Table 1: A list of spatial primitives used to study how humans rea-
son about spatial relationships.

exact matching between atoms and bond types. In image classifi-
cation, one node kernel that has been used is to compare the color
histograms of two image segments [Harchaoui and Bach 2007]. In
our work, nodes represent individual models or collections of mod-
els, and we can use any of the model comparison techniques used
in 3D model database search. Our edges represent different types
of relationships between models, and the kernel used depends on
the types of relationships.

Given node and edge kernels, constructing an efficient kernel over
graphs is a challenging problem with a diverse set of existing ap-
proaches [Gartner et al. 2003]. One method that has proven very
successful is to first reduce the graph to a finite set of strings, and
then use kernels defined over these strings. In particular, a graph
walk kernel can be defined by considering all walks of a fixed
length as the set of strings. As we will see, this admits a sim-
ple and efficient dynamic programming solution. Another mapping
from graphs to sets of strings is to consider all possible α-ary tree
walks in the graph of a fixed depth [Harchaoui and Bach 2007].
Unfortunately, we found tree walks to be intractable for our prob-
lem because there is not a natural way of ordering the edges around
a node; successful applications for this type of graph kernel have
relied on properties like graph planarity to obtain such an ordering.
It has been shown that as long as the underlying node and edge
kernels are positive semi-definite, the resulting walk and tree walk
graph kernels will also be positive semi-definite [Shawe-Taylor and
Cristianini 2004].

2.4 Spatial Relationships

In order to represent a scene as a graph, we need a way to take
the geometric representation of the scene and produce a set of re-
lationships between pairs of objects. These relationships might be
largely geometric in nature (“object A is horizontally displaced by
two meters relative to object B”) or largely semantic (“object A is
in front of object B”). Capturing semantic relationships is desirable
because they are are more stable in the presence of model and scene
variation.

Computer vision has used the spatial relationships between two ob-
jects in a photograph to assist with problems such as scene content
understanding and object categorization. For example, many ob-
jects and materials are difficult to tell apart (sky vs. water) but can
be disambiguated using spatial relationships (sky is rarely found
below grass). One approach uses a conditional random field to
maximize the affinity between object labels using semantic rela-
tionships [Galleguillos et al. 2008]. The relationships they consider
are {inside, below, around, above}. Although these are useful ex-
amples of relationships between objects or materials in 2D images,
they are not representative of semantic relationships between 3D
shapes.

Psychologists have tried to understand what set of spatial primi-
tives humans use to reason about spatial concepts [Xu and Kemp
2010]. Although the nuances of human spatial understanding are
too complicated to construct a comprehensive list of all possible



primitives, in Table 1 we show one list of spatial primitives that has
been used with some success [Feist 2000]. Our goal is to test for
these relationships given only the geometry of two objects. Many
of these relationships are highly geometric in nature (circlement,
above, containment), but some are very difficult to infer from ge-
ometry alone (attachment vs. adhesion).

3 Representing Scenes As Graphs

Our algorithm takes as input a set of scenes represented as scene
graphs. We start by constructing a corresponding relationship graph
for each scene. The nodes of a relationship graph represent all mod-
els in the scene and the edges represent the relationships between
these models. For now, we will assume that our scene graphs are
good segmentations of the scene and that all nodes in the input
scene graphs correspond to either transform nodes or meaningful
objects. This means that, for example, we assume nodes are not
over-segmented down to the level of individual triangles. This prop-
erty is not true in general and real scene graphs will need additional
processing to obtain a set of corresponding meaningful objects —
see Section 6. Each non-transform node in the processed scene
graph corresponds directly to a node in our relationship graph.
Given the nodes of the relationship graph, we then determine the
set of relationships between the nodes, thus creating an edge set for
the relationship graph.

Good relationships should capture features of the scene that cor-
respond with spatial primitives used by humans. We have used a
subset of the relationships in Table 1 as our set of possible relation-
ships. We chose relationships that were highly discriminative and
could also be determined using only geometric tests.

We define a polygon in mesh A to be a contact polygon with respect
to mesh B if there is a polygon in mesh B such that the distance
between the two polygons is less than a small epsilon, and the angle
between the unoriented face normals of the polygons is less than
one degree. For the databases we use, we also have a well defined
gravity vector that describes the global orientation of the scene.

Below is a list of the relationships we chose and the process used to
test for them:

• Enclosure: Mesh A is enclosed inside mesh B if 95% of the
volume of mesh A’s bounding box is inside the bounding box
of mesh B.

• Horizontal Support: Mesh A is horizontally supporting
mesh B if there exists a contact polygon in mesh A whose
face normal is within one degree of the gravity vector.

• Vertical Contact: Mesh A is in vertical contact with mesh B
if there exists a contact polygon in mesh A whose face nor-
mal is within one degree of being perpendicular to the gravity
vector.

• Oblique Contact: Mesh A is in oblique contact with mesh B
if there exists a contact polygon that does not satisfy any other
test.

The tests are performed in the order given and an edge of the cor-
responding type is created between the models with meshes A and
B for the first test that is satisfied. In addition to the above relation-
ships we also retain the original parent-child edges from the scene
graph as a separate type of relationship. Figure 2 is a simple exam-
ple illustrating the resulting relationship graph. Model nodes can
be connected by both contact and scene graph inheritance relation-
ships. Note how the monitor and keyboard nodes are both scene
graph children of the computer node.

Study

Computer

Keyboard

Monitor Chair

Books

Book

Book

Desk

BookBook

Scene graph parent-child relationship Surface contact relationship

Figure 2: A scene and its representation as a relationship graph.
Two types of relationships are indicated by arrows between the
model nodes.

4 Graph Comparison

By constructing a node and edge set for each input scene we obtain
its representation as a relationship graph. Our goal is to compare
two relationship graphs or subparts of relationship graphs. To ac-
complish this comparison we first need a way to compare individual
nodes and edges in these graphs. These will be key subcomponents
in our graph kernel.

4.1 Node Kernel

The nodes of a relationship graph represent models within the
scene. Each node contains a number of features that relate to the
identity and semantic classification of a particular object. These
properties include the size of the object and the geometry, tags, and
texture of the underlying model. In this paper we adapt an exist-
ing approach to model comparison which uses a combination of tag
and geometry descriptors to construct a kernel between two mod-
els [Fisher and Hanrahan 2010]. Each function is defined such that
it indicates similarity of the model pair with respect to the chosen
metric and is itself a positive semi-definite kernel. We have con-
structed all our kernels to be bounded between 0 (no similarity) and
1 (identical).

Model Identity Kernel: A simple Kronecker delta kernel which
returns whether the two models being compared are identical. We
take two models to be identical if they have nearly identical geom-
etry and texture — see Section 6 for specifics. We represent this
identity kernel as δrs for two arbitrary models r and s.

Model Tag Kernel: Each model may be tagged with a primary
and secondary tag. A simple example is a desk lamp which would
have a primary tag of “lamp” and a secondary tag of “desk”. In a
given model comparison, if both primary and secondary tags match
we return a value of 1. For matches only in primary tags and only
in secondary tags we return values of 0.5 and 0.1 respectively. If
the models do not share any tags, we return a value of 0. We let
ktag(r, s) represent this kernel.

Model Geometry Kernel: We use 3D Zernike descriptors to com-
pare the geometry of two models [Novotni and Klein 2003]. In or-
der to compute a Zernike descriptor for a model we closely follow



previous work using Google 3D Warehouse model data [Goldfeder
and Allen 2008; Fisher and Hanrahan 2010]. The geometry is nor-
malized to a unit cube, voxelized onto a 1283 grid and thickened by
4 voxels. This grid is used to compute a 121-dimensional Zernike
descriptor. The distance between two models is then normalized
by estimating the local model density. Let drs denote the Zernike
descriptor distance between models r and s, and gi(n) the distance
to the nth closest model from model i. The model geometry kernel
is given as:

kgeo(r, s) = e
−
(

2drs
min(gr(n),gs(n))

)2

(1)

The minimum value of gi(n) is chosen as the normalization term
and we set n = 100 for all of our results.

Final Model Kernel: We combine the above kernels into a fi-
nal node kernel, using the same weights as in Fisher and Hanra-
han [2010]:

knode(r, s) =

σ(r)σ(s) (0.1δrs + 0.6ktag(r, s) + 0.3kgeo(r, s)) (2)

The σ(r) and σ(s) terms are node frequency normalization scalars
whose computation is described in Section 4.4. The result of this
kernel evaluation is clamped to 0 if it is less than a small epsilon
(ε = 10−6). This model kernel can be precomputed between all
possible models in the database.

4.2 Edge Kernel

We now define an edge kernel to provide a similarity metric be-
tween edges representing relationships. In our implementation we
choose to represent each relationship as a different edge with a sim-
ple string label indicating the type. The kernel between two edges e
and f with types indicated by labels te and tf respectively, is then
simply kedge(e, f) = δtetf .

4.3 Graph Kernel

Given node and edge kernels we now define a graph kernel to per-
form the comparison between two scenes. Our approach is heav-
ily based on a graph kernel algorithm used for image classifica-
tion [Harchaoui and Bach 2007].

A walk of length p on a graph is an ordered set of p nodes on the
graph along with a set of p − 1 edges that connect this node set
together. Unlike a path, nodes in a walk may be repeated.

Let W p
G(r) be the set of all walks of length p starting at node r in a

graphG. As defined earlier, knode(r, s) and kedge(e, f) represent the
node and edge kernels. Considering nodes r and s in relationship
graphsGa andGb respectively we now define the p-th order rooted-
walk graph kernel kpR:

kpR(Ga, Gb, r, s) =∑
(r1,e1,...,ep−1,rp)∈W

p
Ga

(r)

(s1,f1,...,fp−1,sp)∈W
p
Gb

(s)

knode(rp, sp)

p−1∏
i=1

knode(ri, si)kedge(ei, fi)

This kernel is comparing nodes r and s by comparing all walks of
length p whose first node is r against all walks of length p whose

Node kernel evaluations Edge kernel evaluations

0.6 0.9 0.41.0 1.0

r1 r2 r3

e1 e2

s1 s2 s3

f1 f2

Figure 3: Comparison of two walks. Left: The two scenes being
compared. Right: Two walks in each scene, both rooted at the lamp
node. The two walks are compared by taking the product of kernel
evaluations for their constituent nodes and edges. The similarity
between these two walks is 0.6 ∗ 1 ∗ 0.9 ∗ 1 ∗ 0.4 = 0.22.

first node is s. The similarity between two walks is evaluated by di-
rectly comparing the nodes and edges that compose each walk using
the provided kernels for these object types. In Figure 3, we visual-
ize one step of the computation of k2R for two nightstand scenes.

If we also define NG(x) to be the set of all neighboring nodes of
x in the graph G we can formulate a recursive computation for
kpR(Ga, Gb, r, s):

kpR(Ga, Gb, r, s) = knode(r, s)×∑
r′∈NGa (r)

s′∈NGb
(s)

kedge(e, f)k
p−1
R (Ga, Gb, r, s) (3)

where e = (r, r′) and f = (s, s′) are the edges to neighboring
nodes of r and s. The above computation can be initialized with the
base case k0R(Ga, Gb, r, s) = knode(r, s). We can use this recursive
expression to construct a dynamic programming table for each pair
of relationship graphs. We store values for all node pairs between
the two graphs and for all walk lengths up to p. The kernel we
have thus defined can be used to compare the local structure of two
relationships graphs rooted at particular nodes within those graphs.

We can use kpR to define a p-th order walk graph kernel kpG which
compares the global structure of two relationship graphs. Here we
use VG to mean the set of all nodes of graph G. This kernel is
computed by summing kpR over all node pairs across the two graphs:

kpG(Ga, Gb) =
∑

r∈VGa
s∈VGb

kpR(Ga, Gb, r, s) (4)

The running time complexity for computing kpG between two
graphs is O(pdGdHnGnH) where dG is the maximum node de-
gree and nG is the total number of nodes in the graphs [Harchaoui
and Bach 2007]. As we show in Section 7.4, in practice these eval-
uations are very fast.



The graph kernel we have presented can be interpreted as embed-
ding the graphs in a very high dimensional feature space and com-
puting an inner product 〈Ga, Gb〉. While inner products are widely
useful for many applications, some applications such as the Gaus-
sian kernel K(Ga, Gb) = e−‖Ga−Gb‖2/σ operate on a distance
between the objects instead of an inner product. Given a positive-
definite kernel, there are many possible distance functions that can
be defined over the feature space spanned by the kernel [Ramon
and Gärtner 2003]. For a p-th order walk graph kernel kpG, a simple
corresponding distance function is:

d(Ga, Gb) =
√
kpG(Ga, Ga)− 2kpG(Ga, Gb) + kpG(Gb, Gb)

4.4 Algorithm Details

Graph Kernel Normalization. Normalization of the walk graph
kernel is used to account for the fact that scenes containing many
objects will tend to match better against all other scenes by virtue
of their broader coverage of the dataset of models and relationships.
For example, the relationship graph formed by a union of all the
scenes in the database would match well to every scene. To com-
bat this problem, we implement a normalization term by dividing
the result of a graph kernel by the maximum of the evaluation be-
tween each graph and itself. For each graph kernel kG we have a
normalized graph kernel k̂G:

k̂G(Ga, Gb) =
kG(Ga, Gb)

max (kG(Ga, Ga), kG(Gb, Gb))

This normalization ensures that a graph will always match itself
with the highest value of 1 and other graphs with values between 0
and 1.

Node Frequency Normalization. The importance of a model
within a scene is intrinsically affected by the number of occur-
rences of that object within the scene. For instance, the existence
of a book model in a scene is an important cue from which we can
infer the type of room the scene is likely representing. The exis-
tence of hundreds more book models will naturally influence our
understanding of the scene. However, the relative importance of
each additional book diminishes as it is in essence an instance of
an agglomeration. In order to represent this we introduce an occur-
rence frequency normalization factor for the node kernel evaluation
following a term weighting approach used for document retrieval
normalization [Salton and Buckley 1988]. Concretely, for a node
na in the set of nodes VG of a graph G:

σ(na) =
1∑

nb∈VG
knode(na, nb)

This normalization factor scales the node kernel evaluation defined
in Equation 2. The computed value for na is equal to 1 if the node
is unique and decreases to 0 with an increasing number of similar
or identical nodes. Using this approach we avoid the problem of
large agglomerations of object instances, such as books in a library,
drowning out other interesting structure in a scene.

Architecture Comparisons. Architectural structure is hard to
compare to other architecture because it will not in general be re-
lated through geometry or tags. However, we would still like to be
able to take walks through the architectural support of a scene. To

see more clearly why this comparison is challenging, consider two
scenes that consist of a desk and a chair on top of a floor. Both
scenes contain the walk {“chair”, “floor”, “desk”} and to a human
these walks should be relatively similar. However, using our defi-
nition of kpR these walks will not contribute to the final graph ker-
nel term unless the model kernel between the two floor models in
the scenes is non-zero. Although it is possible that these nodes
may have been explicitly tagged as architecture or the two rooms
may have an extremely similar design (and thus will have simi-
lar Zernike descriptors), in many cases the model kernel we have
proposed will evaluate to zero for two different room architecture
models.

We use the Google SketchUp database (see Section 6), where al-
most all of the the scene’s architectural geometry is directly at-
tached to the root node. Our approach is to let our node kernel al-
ways evaluate to a minimum value for root nodes so that paths going
through the root node are not eliminated from consideration. We
therefore enforce knode(root(Ga), root(Gb)) ≥ c where root(G)
is the root node of a graph G and c is a constant that we set to 0.1
for this work. For other databases, explicit or automatic tagging of
architecture could be used instead of this approach.

Parameter Selection. Our graph kernel, kpG, is parameterized by
p, the length of the walks taken. Different choices for pwill capture
scene features at different resolutions, and it is unlikely that a single
value of p will be the best kernel for any given task. This is a very
common problem in machine learning and several multiple kernel
learning techniques have been developed to allow learning tasks to
benefit from information provided by multiple kernels [Bach et al.
2004]. Although it is possible for machine learning classifiers to di-
rectly make use of multiple kernels, it is very convenient to define
a single kernel that is a linear combination of kpG for different val-
ues of p. We use the term “basis kernels” to refer to the individual
kernels that are summed to form the final kernel. Given any ma-
chine learning task, we can use cross-validation to decide on good
weights for each of the basis kernels. Here we formulate a machine
learning task that we will use to automatically learn the parameters.

Relevance feedback is a technique used by search engines to im-
prove results. The user selects relevant scenes from a candidate list
of results, and the search engine attempts to transform the feature
space to favor results similar to ones the user marks as relevant [Pa-
padakis et al. 2008]. The input to our relevance feedback imple-
mentation is a set of scenes selected by the user, each marked as
either a good or bad response to the query. Given a specific scene
kernel, we train a soft margin support vector machine classifier us-
ing the selected scenes as the training examples. We use the sequen-
tial minimal optimization algorithm to train our SVM [Platt 1999].
Because the SVM is only trained on the selected scenes this train-
ing is extremely fast; even if the user selects 50 scenes the SVM
optimization always took us less than 50ms. We then use this SVM
to rank all scenes in the database according to their signed distance
to the separating hyperplane.

To use relevance feedback to learn our kernel parameters we first
need to develop a training set. We suppose that we have N differ-
ent user-designed queries (an example query might be “scenes that
contain interesting sconces”). For each task, we assume users have
gone through every scene in the corpus and evaluated whether it is
a good or bad response to the query.

We can use this dataset to evaluate the quality of our relevance feed-
back results for a given set of parameters. For each modeling task
we randomly pick samples from the database, half from the positive
class and half from the negative class. Given a fixed set of kernel
weights, we can compute the expected classification error of our
SVM and average it over the N modeling tasks. We compute this



Study

Desk

Query

Chair

Monitor
Scene graph
parent-child 
relationship

Surface contact 
relationship

Figure 4: A model context search expressed by introducing a query
node to a relationship graph. The dotted edge represents the con-
tact relationship that connects the query node to the scene and de-
fines its context. Multiple edges of different relationship types can
easily be introduced for a single query node.

average classification error for a large set of possible parameters,
and choose the parameters with the lowest average classification
error. In addition to varying this over a large set of possible weights
for each basis kernel, we also search over different possible val-
ues of the soft margin parameter C. Although we found this cross-
validation approach to multiple kernel learning to be sufficient for
our purposes, it is also possible to directly optimize the weights of
the basis kernels as part of a modified SMO algorithm [Bach et al.
2004].

5 Model Context Search

Using our framework, there is an intuitive mapping between a
context-based search for 3D models and our rooted-walk graph ker-
nel (kpR). We implement such a search by placing a virtual query
node in the graph. The relationships that the desired model should
have with other models in the scene are defined through a labeled
set of connecting query edges. Geometry, tags, and other node
properties can optionally be provided by the user to refine the query
beyond just considering relationships to other models in the scene.
Figure 4 illustrates a query for an object that is in contact with a
desk.

Once we have placed the virtual node within the query scene’s rela-
tionship graph, we then evaluate kpR between this virtual node and
all other relationship graphs in our scene corpus. For each scene in
the database, we have to choose which nodes should be used as can-
didate models. Unless the user provides additional information to
constrain the set of possible models, we use the simple approach of
considering all nodes in all relationship graphs as candidates. The
kpR evaluation for each node indicates how similar the environment
around that model is to the environment around the query node. We
use this evaluation to rank all models in the database.

In general we cannot directly apply Equation 2 because we do not
know the geometry or tags of the query node. However, we would
still like to be able to take advantage of size, geometry, or tag in-
formation if provided by the user. If any category of information is
not provided, we take this to mean that, with respect to the corre-
sponding metric, all nodes should be considered equally desirable.

Given a query node q and another node n against which the query
node is being compared, our modified node kernel for query nodes
will use tag and geometry kernels kQtag(q, n) and kQgeo(q, n). These
kernels return a constant value of 1 if q has no tag or geometry

information respectively. Otherwise, the regular versions of the tag
and geometry kernels ktag and kgeo are evaluated for the pair (q, n).
Using these component kernels we define a context query aware
node kernel that will take into account all the provided properties
for context search query nodes:

kQnode(q, n) = σ(n)
(
0.1 + 0.6kQtag(q, n) + 0.3kQgeo(q, n)

)
(5)

The walk length parameter p in kpR controls the size of the contex-
tual neighborhood that is compared by the model context search.
When p = 0, all models are ranked by considering only the geom-
etry, tags, or size provided by the user for the query node. When
p = 1, the algorithm additionally considers the geometry and tags
of the models connected to the query node by query edges (in Fig-
ure 4, this would just be the desk model). Increasing to p = 2
and beyond provides an intuitive way of visualizing the region of
support considered by the context search.

6 Dataset

To test the effectiveness of our algorithm, we need a set of 3D
scenes. There are several potential large scene databases. For ex-
ample, virtual worlds such as World of Warcraft and Second Life
are gigantic environments that contain large numbers of models.
Online databases such as Google 3D Warehouse also contain many
scenes that have been uploaded by artists by combining individual
models found in the database. We focus on using Google 3D Ware-
house because it is publicly accessible and contains work submitted
by a diverse set of artists who have modeled many different types
of environments. Previous work has explored the use of Google 3D
Warehouse as a scene corpus [Fisher and Hanrahan 2010].

Each scene in Google 3D Warehouse is represented using a scene
graph and almost all are modeled using Google SketchUp. As an
artist models a scene, they can perform operations such as adding
tags to scene graph nodes or grouping geometry together forming
a new node. For the majority of scenes we collected, most seman-
tically meaningful objects are contained in their own scene graph
node. This separation is often done for the artists’ own convenience
– they structure their scene objects so that related components can
be easily manipulated as a single unit. However, as has been noted
in previous research, there are still many scene graph nodes that do
not correspond to widely useful objects. For example, many models
are uploaded by manufacturing companies showcasing their prod-
ucts and are very finely segmented into their constituent compo-
nents. Many of these components are not useful because they are
not easily interchangeable with components in other models.

We use a very simple process to standardize the tagging and seg-
mentation in our scenes. Our approach mimics the methods used in
computer vision to construct 2D image datasets such as PASCAL,
MSRC, and LabelMe [Russell et al. 2008]. We first accumulate a
candidate list of all models in the database by considering all nodes
in all scene graphs to be models. We skip scene graph nodes that
do not introduce new geometry, such as transform nodes with only
one child. We define two scene graph nodes to correspond to the
same model if their geometry and texture are equivalent. We say
two nodes have the same geometry if the length of the vector differ-
ence between their Zernike descriptors is less than a small epsilon
(Zernike descriptors are invariant under scaling, rotation, and trans-
lation). Likewise, we say two nodes have the same texture if, after
scaling both textures to be the same size, the difference between
their texture bitmaps is less than a small epsilon. We then present
a picture of each model to a human. They provide a main category



and optionally a subcategory for each model. Alternatively, they
may choose to classify the model as “not meaningful”. All root
nodes are considered meaningful, as they correspond to complete
scenes that have been uploaded to the database. While previous re-
search has used the tags attached to the scene graph nodes, these
tags are sparsely distributed throughout the database and are often
unreliable and in many different languages [Fisher and Hanrahan
2010]. Our goal was to acquire a set of scenes with approximately
uniform segmentation and tagging quality.

Using this per-model information we can convert our scenes into
relationship graphs. All nodes corresponding to models marked as
meaningful by users become nodes in the relationship graph. Scene
graph parent-child relationship edges are added between a node and
its parent. If a node’s parent node does not correspond to a mean-
ingful model, we recursively move to the next parent until a node
corresponding to a meaningful model is found. Geometry-based re-
lationship edges are then added as described in section 3, and the
resulting relationship graphs are used as the input to our algorithm.

We focus on a subset of Warehouse scenes that are relevant to a
specific category of queries. We consider all scenes that contain
more than one object and have any of the following tags: “kitchen”,
“study”, “office”, “desk”, or “computer”. In total we have chosen to
use 310 such scenes. Indoor room scenes are an interesting area to
study because their interior design contains structural patterns for
our algorithm to capture.

Although in general we have observed most Google 3D Warehouse
scenes to be over-segmented, the architecture is usually not well
segmented. For scenes such as a house with multiple rooms, the
architecture itself contains interesting substructure that is often not
captured in our scene graphs. While one might imagine several
ways to automatically perform this segmentation, the subset of
Google 3D Warehouse scenes we are considering are at most as
complicated as a single room and usually do not have complex ar-
chitectural substructures. Nevertheless, our algorithm can easily
take advantage of more detailed information about the architec-
ture that may be provided by some databases, such as computer-
generated building layouts [Merrell et al. 2010].

7 Applications

There are a large number of applications of our graph-based scene
kernel. We have chosen to focus specifically on applications of the
scene kernel that improve scene modeling.

7.1 Relevance Feedback

Recall that kpG is parameterized by p and different choices for p
capture scene features at different resolutions. As proposed in Sec-
tion 4.4, we can use relevance feedback to perform parameter selec-
tion and determine a good aggregate kernel that captures features at
different scales.

To build a training set we presented four different users with our
scene database and asked them to think of a scene modeling task
of their choice. For example, they might want to find scenes with
interesting computer peripherals such as webcams or fax machines,
or find scenes with wall sconces that fit well in a study they are
modeling. They then classified each scene in the database as either
being a good or bad response to their task.

We use this training set for parameter selection. Our basis kernels
are walk graph kernels of length 0 to 4. We consider all possible
linear combinations of these five kernels with weights ranging from
0 to 1 at 0.1 increments. We also consider the following values
for the soft margin parameter C: {0.001, 0.01, 0.1, 1, 10, 100}. For

C k0G k1G k2G k3G k4G

10 0.5 0 0.1 0.1 0.3

Table 2: Weighting used for combining graph kernels with different
path lengths.

10%

15%

20%

25%

30%

35%

0 10 20 30 40 50 60

A
ve

ra
ge

 C
la

ss
if

ic
at

io
n

 E
rr

o
r

Number of Training Examples

Relevance Feedback Training Examples

Figure 5: Classification error using a support vector machine to
distinguish between relevant and irrelevant scenes as a function of
the number of user-selected training examples.

this test we used 6 positive and 6 negative examples, and averaged
the classification error over 10,000 randomly chosen training sets
and over each of the four modeling problems. The best set of pa-
rameters is shown in Table 2 and had an average classification error
of 20.9%. The varied nature of these coefficients suggests that dif-
ferent settings of our graph kernel are capturing different features
of the scenes.

In Figure 5 we compare the classification error using the weighted
kernel from Table 2 as a function of the number of training exam-
ples used. Although the classification error decreases steadily, it
remains close to 12% even when 30 positive and 30 negative train-
ing examples are used. This suggests that many of the queries de-
signed by our users contain challenging subtleties that are not easily
captured by our graph kernel.

In practice we have found that our relevance feedback implementa-
tion performs better than our classification error alone would sug-
gest. This is because the SVM ranks the scenes based on confi-
dence, so the user is first presented with suggestions that the al-
gorithm determines are very likely to be relevant. In Figure 6 we
show relevance feedback results using 4 training scenes and the co-
efficients given in Table 2. Even with a small number of selected
scenes the algorithm is able to infer the user’s preferences. All of
the top 18 results are relevant to the query.

At first glance relevance feedback may seem cumbersome — users
must first issue a query, classify multiple results, and finally ask for
relevance feedback based on their selections. However it is possible
for search engines to passively use relevance feedback methods by
aggregating search history information from many previous users.
For example, if a user issues a common query that the engine has
seen many times before, click-through rates or model insertion rates
could be used as a proxy to predict the relevance or irrelevance of
each result.

7.2 Find Similar Scenes

One application of our scene kernel is to enable the user to search
for similar scenes. This kind of query is supported in several 3D
model search engines including Google 3D Warehouse [SketchUp
2009]. The user selects an existing scene (either one in the database



Positive Examples Negative Examples

Figure 6: Search results using relevance feedback. Top: A user looking for scenes with various computer peripherals selects two scenes they
like and two scenes they do not like from the database. Bottom: The top 18 results using a scene search guided by the user’s selections.

or the scene they are currently modeling), and asks for similar
scenes. We use the aggregate graph kernel described in Table 2 to
compute the similarity between the chosen scene and all the scenes
in the database. Scenes are ranked using this similarity value in
decreasing order.

In Figure 7 we show the top-ranked results for five different queries.
Our algorithm returns scenes that share many structural similarities
with the query scene. For example, in the first scene many results
contain a similar style of shelving. Likewise, in the second scene
the top results are all simple desk scenes with laptop computers.
These results also demonstrate the large amount of structure sharing
used by artists in Google 3D Warehouse. For example, in the fourth
scene query, the top ranked result uses the exact same models on the
top of the desk, while changing other aspects of the furniture and
layout.

7.3 Context-based Model Search

As described in Section 5, we can use the rooted-walk graph kernel
kpR to search for models that fit well in a provided context. This
is implemented by inserting a virtual query node into the scene’s
relationship graph. This query node is connected to nodes in the
scene using edges which represent the desired relationships. We
then evaluate kpR for all other nodes in relationship graphs of other
scenes, and use this to rank all models in the database.

In Figure 8 we show the results of two context-based queries. In
both cases the user is searching for models that would belong on
top of the desk in their scene. A query node was inserted into these
scenes and connected to the desk node through a horizontal support
relationship edge. We then evaluate kpR for walk length p = 3
between the query node and all other relationship graph nodes in
the database to determine model suggestions.

The results indicate how the existence of a computer and related
models on the desk in the top scene produces computer peripheral

and accessory suggestions. In contrast, the bottom scene’s context
induces results that are more appropriate for a study desk. Also
observe that in both cases all of the highly ranked results are at least
potentially relevant — only models that have been observed to be
horizontally supported by desks (or models geometrically similar
to desks) can be highly ranked.

The approach of Fisher and Hanrahan [2010] assumes all pairs of
objects are random independent events. In contrast, our method
considers the structural relationships between all objects in the
scene. To illustrate the difference between these two approaches,
we modeled a desk scene with a bowl and two cups, shown on the
left side of Figure 9. Consider a user who wants to search for other
objects to place on this desk. We want to execute this query using
both methods.

There are two main differences between the formulation of context
search queries in these algorithms that need to be resolved. First,
our approach expresses the desired location as a relationship to ex-
isting objects, while their approach expresses the location as a 3D
point in the scene. We have chosen a point 10cm above the center
of the desk to correspond to our algorithm’s “horizontal contact”
relationship to the desk. Second, their algorithm makes use of a
suggested object size. Though either method can easily incorporate
a size kernel, we have chosen to make our comparisons in the ab-
sence of size information. Although size information can be very
useful, there are a large number of queries where an approximate
size is either unavailable or highly unreliable. For example, not all
scenes in the database may use the same scale — it is fair to com-
pare relative object size within the same scene but it can be dan-
gerous to assume that absolute unit values are comparable across
scenes.

In Figure 9, we show the results using both approaches on our
database. Because our algorithm considers the structural relation-
ships in the scene it returns many plausible objects that have been
observed on desks in the database, such as lamps and speakers. On



Query Results

Figure 7: “Find Similar Scene” search results. Left: The query scene selected by the user. Right: The top six scenes in the database that
match the query. The best match is shown on the left.

Query Scene Suggested Models

Figure 8: Context-based model search results. Left: A user modeling a desk scene issues a query for a model to be placed on the desk. Right:
Suggested models for each query. Note how the context provided by the models in the query scene influences the categories of the suggestions.



Query Scene Our Method

Fisher and Hanrahan 2010

Figure 9: Left: The user asks for an object on the desk. Right:
Results comparing our method against previous work.

the other hand, their algorithm considers all object pairs indepen-
dently. It returns objects such as sinks and mixers because these
objects are often found in the vicinity of bowls, cups and draw-
ers. By not considering the semantic relationships between models,
their algorithm is not able to determine that objects such as sinks
are not commonly found on top of desks — our approach can never
make such suggestions unless there is a scene in the database with
a mixer or sink on top of a desk.

7.4 Performance

Real-time performance is critical for practical uses of our graph ker-
nel. To evaluate the performance of our algorithm we computed the
walk graph kernel k4G between all pairs of scenes in our database.
Note that the dynamic programming table used for this computation
also stores intermediate results for all walk lengths up to p = 4. As
described in Section 4.1, we precompute the model kernel evalua-
tions between all possible models. It was very easy for us to dis-
tribute all the computations of kpG over multiple processors because
all scene comparisons can be performed independently. The aver-
age graph to graph kpG evaluation took 0.150ms. Using this average
value it would take approximately 1.5s to exhaustively compare a
query scene against a 10,000 scene database. This experiment was
run on a quad-core 2.53GHz Intel Xeon CPU. Note that this is also
the approximate cost of executing a 3D model context query — a
subcomponent of evaluating kpG between two scenes is to compute
kpR between all possible node pairs. Overall, we feel our algorithm
is fast enough for interactive use on most databases.

8 Discussion and Future Work

We have presented a novel framework for characterizing the struc-
tural relationships in scenes using a relationship graph representa-
tion. Our basis kernels compare the local information contained
in individual models and relationships, and the walk graph kernel
aggregates this information to compare the topological similarity
between two scenes. We have shown that our algorithm returns a
relevant set of results when applied to many scene modeling tasks,
including finding similar scenes and context-based model search.

The modular nature of our framework makes it very extensible. For
example, it is easy to incorporate new relationship kernels, such as
comparing the relationship between two objects in horizontal con-
tact by looking at the size and shape of the contact region. Likewise,
we can take advantage of many advancements in graph kernels. For
example, the walk graph kernel is subject to “tottering”, where the
walks are allowed to move along a direction and then instantly re-
turn to the original position. This can result in many redundant
paths, but it is possible to transform the input graphs so as to disal-
low these walks [Mahé et al. 2004].

Using a kernel-based approach to scene comparison makes it possi-
ble to leverage the substantial literature on kernel methods from ma-

chine learning and opens many related applications that can be ex-
plored. For example, classification algorithms can be used to auto-
matically classify new scenes that are uploaded to a scene database.
Semi-supervised learning can be used to propagate a sparse set of
scene tags across all scenes in the database [Goldfeder and Allen
2008]. Kernel-based clustering algorithms could be applied to the
set of models or scenes, producing clusters like “silverware” and
“table centerpieces”.

While our goal was to compare scenes in a way that coincides with
the human notion of scene similarity, there are many cases that our
approach handles poorly. First, many of our relationships rely on
two models being in planar contact; however, for our dataset we
observed that our algorithm would sometimes fail to capture the
correct spatial relationship between objects because they were rep-
resented by either inter-penetrating or floating geometry. Further-
more, many spatial primitives cannot be disambiguated by geom-
etry alone but are often used by human observers to classify rela-
tionships.

One challenge we encountered was that scene modeling programs
such as Google SketchUp do not encourage artists to maintain a rea-
sonable segmentation of their scene. The scene graph is maintained
mostly for the purpose of rendering, and certain types of editing op-
erations can severely fragment meaningful objects into many nodes.
As scene modeling tasks become more common, scene modeling
programs will likely make more of an effort to help artists maintain
a meaningful semantic segmentation of their scene and better track
the relationships between these objects. This will make the limited
manual segmentation we performed unnecessary and is extremely
useful for enabling user interaction in applications such as virtual
worlds. We feel that software that is aware of the relationships ex-
pressed in 3D scenes has significant potential to augment the scene
design process.

Acknowledgments

Support for this research was provided by the Fannie and John Hertz
Foundation. We would also like to thank Google for allowing the
images of 3D Warehouse models to be published.

References

BACH, F., LANCKRIET, G., AND JORDAN, M. 2004. Multiple ker-
nel learning, conic duality, and the SMO algorithm. In Proceed-
ings of the 21st international conference on Machine learning,
ACM.

CHEN, D., TIAN, X., SHEN, Y., AND OUHYOUNG, M. 2003. On
visual similarity based 3D model retrieval. In Computer graphics
forum, vol. 22, Amsterdam: North Holland, 1982-, 223–232.

CRISTIANINI, N., AND SHAWE-TAYLOR, J. 2000. An introduc-
tion to support Vector Machines: and other kernel-based learn-
ing methods. Cambridge University Press.

FEIST, M. 2000. On in and on: An investigation into the linguistic
encoding of spatial scenes. UMI, Ann Arbor, Michigan.

FISHER, M., AND HANRAHAN, P. 2010. Context-based search for
3D models. ACM Trans. Graph. 29 (December), 182:1–182:10.

FUNKHOUSER, T., AND SHILANE, P. 2006. Partial matching of
3D shapes with priority-driven search. In Proceedings of the
fourth Eurographics symposium on Geometry processing, Euro-
graphics Association, 142.

FUNKHOUSER, T., MIN, P., KAZHDAN, M., CHEN, J., HALDER-
MAN, A., DOBKIN, D., AND JACOBS, D. 2003. A search



engine for 3D models. ACM Transactions on Graphics 22, 1,
83–105.

GALLEGUILLOS, C., RABINOVICH, A., AND BELONGIE, S.
2008. Object categorization using co-occurrence, location and
appearance. In IEEE Conference on Computer Vision and Pat-
tern Recognition, 2008. CVPR 2008, 1–8.

GARTNER, T., FLACH, P., AND WROBEL, S. 2003. On graph ker-
nels: Hardness results and efficient alternatives. In Proceedings
of the 16th Annual Conference on Learning Theory, 129.

GOLDFEDER, C., AND ALLEN, P. 2008. Autotagging to improve
text search for 3D models. In JCDL ’08: Proceedings of the 8th
ACM/IEEE-CS joint conference on Digital libraries, ACM, New
York, NY, USA, 355–358.

HARCHAOUI, Z., AND BACH, F. 2007. Image classification with
segmentation graph kernels. In Computer Vision and Pattern
Recognition, IEEE.

KASHIMA, H., TSUDA, K., AND INOKUCHI, A. 2004. Kernels
for graphs. Kernel methods in computational biology, 155–170.

MAHÉ, P., UEDA, N., AKUTSU, T., PERRET, J., AND VERT, J.
2004. Extensions of marginalized graph kernels. In Proceedings
of the twenty-first international conference on Machine learning,
ACM, 70.

MERRELL, P., SCHKUFZA, E., AND KOLTUN, V. 2010.
Computer-generated residential building layouts. ACM Trans-
actions on Graphics (TOG) 29, 6, 181.

NOVOTNI, M., AND KLEIN, R. 2003. 3D Zernike descriptors for
content based shape retrieval. In Solid modeling and applica-
tions, ACM, 225.

PAPADAKIS, P., PRATIKAKIS, I., TRAFALIS, T., THEOHARIS, T.,
AND PERANTONIS, S. 2008. Relevance feedback in content-
based 3D object retrieval: A comparative study. Computer-Aided
Design and Applications Journal 5, 5.

PARABOSCHI, L., BIASOTTI, S., AND FALCIDIENO, B. 2007.
3D scene comparison using topological graphs. Eurographics
Italian Chapter, Trento (Italy), 87–93.

PLATT, J. 1999. Fast training of support vector machines using se-
quential minimal optimization. In Advances in Kernel Methods,
MIT press, 185–208.

RAMON, J., AND GÄRTNER, T. 2003. Expressivity versus ef-
ficiency of graph kernels. In First International Workshop on
Mining Graphs, Trees and Sequences, 65–74.

RUSSELL, B., TORRALBA, A., MURPHY, K., AND FREEMAN, W.
2008. LabelMe: a database and web-based tool for image anno-
tation. International Journal of Computer Vision 77, 1, 157–173.

SALTON, G., AND BUCKLEY, C. 1988. Term-weighting ap-
proaches in automatic text retrieval. In Information Processing
and Management, 513–523.

SHAWE-TAYLOR, J., AND CRISTIANINI, N. 2004. Kernel meth-
ods for pattern analysis. Cambridge University Press.

SKETCHUP, 2009. Google sketchup blog.
sketchupdate.blogspot.com/2009/05/
3d-warehouse-now-in-better-shape.html.

TANGELDER, J., AND VELTKAMP, R. 2008. A survey of con-
tent based 3D shape retrieval methods. Multimedia Tools and
Applications 39, 3, 441–471.

XU, Y., AND KEMP, C. 2010. Constructing spatial concepts from
universal primitives. Proceedings of the 32nd Annual Confer-
ence of the Cognitive Science Society.


