
LAST PRECEPT:

1) Amazon (probable) system architecture:

- Web tier with servers running the 'applications' on top of them. We

specifically look at the 'shopping cart' application because it has

some intereting properties.

- Storage tier: (DYNAMO) objects are stored as <key, value> pairs.

Keys (we believe) describe a userID (his/her shopping cart) while the

value is just a 'blob' of information (structured/unstructured).

- We can imagine three types of requests from the client to the

application server:lookup (look at what's in the cart), add or delete

item. These client requests are mapped to two different API calls to

the data store system (DYNAMO itself) get() and put().

- the get() operation is called on a key. The get returns one single

object (the shopping cart) or a list of objects if there was some

conflicts within DYNAMO.

- the put() operation is called on a (key,context). The context is in

reality the vector clock use by the DYNAMO system.

Question (still don't understand): do we have to call a get() before

calling a put()? In the paper it says that the put() operation

creates a new 'context' (updates the vector clock) but needs the old

context (this is also needed because DYNAMO resolves conflicts at read

time and not at write time).

- There are two types of conficts: semantic and syntactic conflicts.

Semantic conflicts are resolved by the application. These conflicts

arise when DYNAMO is unable to resolve the syntactic conflicts (due

to concurrent writes / network partition? / failures). Syntactic

conflicts are discrepancies between vector clocks. The only conflicts

DYNAMO itself can resolve are by looking at each component in the

vector clock and if all elements in one vector clock are 'older' than

another then the old copy of the object can be discarded.

- DYNAMO vector clocks: how are they built? (this ties in with how the

partitioning is done, not sure if I should talk about the consistent

hashing + virtual nodes and replication before talking about vector

clocks)

Vector clocks are used for data versioning... let's talk about data

versioning

Data versioning:

- Dynamo provides eventual consistency, in fact it allows for updates

to be propagated to all replicas asynchronously.

A put() call may return to its caller before the update has been

applied to all the replicas (but it has to return after the W

parameter specified in the quorum right?)

- Problems are caused by network partitions, concurrent actions or

failures. Due to this what can happen is version branching: example?

look at figure 3

To avoid this Dynamo uses vector clocks to capture causality between

different versions of the same object. If the vector clocks can

be causally ordered then the conflict is syntactically resolved,

otherwise it must be semantically resolved.

Causal consistency (causal ordering) review:

a stronger notion than partial ordering. what is partial ordering?

In partial ordering we only had two rules:

- on same process if a --> b then a comes before b

- send(m) precedes a receive(m)

- implemented through Lamport logical clock: one timestamp per

process. Timestamp is updated locally in the following method:

 max (receiver‐counter, message‐timestamp) + 1

Casual consistency instead?

- concurrent writes maybe seen in different order

- Writes that are poten!ally causally related must be seen by all

processes in the same order.

Partitioning: (usual picture)

- Partitioning is achieved through consistent hashing. We imagine to

have a 'ring' of values and each node owns a portion of the ring (in

this specific case it handles all the items preceding its hash(nodeID)

value up to its predecessor. Each key is inserted into the ring by

computing hash(key) and then assigned by the closest node clockwise

What are two problems associated with this:

- not uniform data distribution

- oblivious to performance of nodes (heterogeneous nodes - some have

less capacity)

SOLUTION:

- virtual nodes: each node in the ring is a 'virtual node'. One node

owns multiple nodes. Effectively when a new node joins the system he

takes up different 'virtual nodes' and thus takes multiple positions

in the ring.

advantages:

- when a real node becomes available the load is split across multiple

nodes (not just 1 gets overloaded)

- when a new node joins the system it accepts a roughly equivalent

amount of load from each of the other nodes (takes load off of many

nodes)

Replication:

How is data replicated across nodes?

- each data item is replicated N times (N is tunable by the system).

The node who 'owns' the key is the coordinator and it is in charge of

replicating the data items that fall within its range.

The N successors of the coordinator node are the nodes where the

replication is made. Thus each node owns items for his own range and

the previous N nodes.

The list of nodes responsible for a certain range of values is called

the preference list

Execution of get() and put() operations:

get() and put() should be directed towards the coordinator but what

can happen is that we have a load balancer in front of the DYNAMO and

the request will be forwarded to a random node. if the node is in the

top N preference list it will handle the request, otherwise it will

forward the request to the coordinator.

How does DYNAMO maintain consistency?

consistency protocol used in quorum systems. We have two configurable

values R and W. Setting a R+W > N we get a quorum system. But this

system does not provide great performance as it goes as fast as the

slowest between the R & W servers.

Upon receiving a put() request for a key, the coordinator generates

the vector clock and then sends the new vector clock (and the new

object) to the highest N ranked. returns when receives W-1 responses

for a get() request the coordinator requests all existing versions

of data for that key from the N-highest ranked nodes (waits for R

responses)

sloppy quorum: all read and write operations are performed on the

first N healthy nodes which may not always be the first N nodes

encountered while walking the consistent hashing ring.

so when a node fails (say A) then another node (D... but why D?) will

hold the item in place for A until node A comes back online. When this

happens then D will attempt to deliver the replica to A. D is a called

a hinted replica and this procedure is called a hinted handoff

what happens if the hinted replica goes offline? DYNAMO implements an

anti-entropy replica synchronization protocol to keep the replicas

synchronized.

A merkle tree is a tree of hashes. The leaves are the hashes of each

key, the parent is the hash of all its children. In Dynamo each node

keeps a merkle tree for each key range it has to hold (each virtual

node).

comparing the set of items two nodes have is rather easy (just compare

hashes and then explore the tree if the hashes are different).

the problem is when a node leaves the system, the ranges for each

other node change and the merkle trees have to be recalculated.

