LBi

- -

Server
Cluster

Switches

Hashing in Networked Systems

COS 461: Computer Networks
Spring 2011

Mike Freedman
http://www.cs.princeton.edu/courses/archive/springl1/cos461/



Hashing

Hash function

— Function that maps a large, possibly variable-sized

datum into a small datum, often a single integer that
serves to index an associative array

— In short: maps n-bit datum into k buckets (k << 2")

— Provides time- & space-saving data structure for lookup

Main goals:

— Low cost

— Deterministic

— Uniformity (load balanced)

keys

John Smith
Lisa Smith
Sam Doe

Sandra Dee

hash
function

hashes

00
01
02
03
04
05

15



Today’s outline

e Uses of hashing
— Equal-cost multipath routing in switches
— Network load balancing in server clusters
— Per-flow statistics in switches (QoS, IDS)
— Caching in cooperative CDNs and P2P file sharing
— Data partitioning in distributed storage services

e Various hashing strategies
— Modulo hashing
— Consistent hashing
— Bloom Filters



Uses of Hashing



Equal-cost multipath routing (ECMP)

* ECMP

— Multipath routing strategy that splits traffic over
multiple paths for load balancing

 Why not just round-robin packets?
— Reordering (lead to triple duplicate ACK in TCP?)

— Different RTT per path (for TCP RTO)...
— Different MTUs per path



Equal-cost multipath routing (ECMP)

e Path-selection via hashing
— # buckets = # outgoing links

— Hash network information (source/dest IP addrs) to
select outgoing link: preserves flow affinity



Now: ECMP in datacenters

Internet Internet

g Core
Data Center @ @

Layer 3

Aggregalior
Key @ @ @ @ N
*CR=L3Core Router \ /

* AR = L3 Access Router g Q S O g O g Q Edge

" | *AS =12 Aggr Switch

o] SOO0 SOHE HOOP HIHP

Y
A Single Layer 2 Domain

* Datacenter networks are multi-rooted tree
— Goal: Support for 100,000s of servers
— Recall Ethernet spanning tree problems: No loops
— L3 routing and ECMP: Take advantage of multiple paths



Network load balancing

* Goal: Split requests evenly over k servers
— Map new flows to any server

— Packets of existing flows continue to use same server

e 3 approaches

— Load balancer terminates TCP, opens own connection to server
— Virtual IP / Dedicated IP (VIP/DIP) approaches
* One global-facing virtual IP represents all servers in cluster
e Hash client’s network information (source IP:port)
* NAT approach: Replace virtual IP with server’s actual IP
e Direct Server Return (DSR)



Load balancing with DSR

Server
Cluster

Switches

e Servers bind to both virtual and dedicated IP
* Load balancer just replaces dest MAC addr

* Server sees client IP, responds directly
— Packet in reverse direction do not pass through load balancer

— Greater scalability, particularly for traffic with assymmetric
bandwidth (e.g., HTTP GETs)



Per-flow state in switches

e Switches often need to maintain connection
records or per-flow state

— Quality-of-service for flows
— Flow-based measurement and monitoring
— Payload analysis in Intrusion Detection Systems (IDSs)

* On packet receipt:
— Hash flow information (packet 5-tuple)
— Perform lookup if packet belongs to known flow
— Otherwise, possibly create new flow entry

— Probabilistic match (false positives) may be okay



Cooperative Web CDNs

* Tree-like topology of cooperative web caches

— Check local
— If miss, check siblings / parent public
Internet
* One approach @ Parent
— Internet Cache Protocol (ICP) / ﬁbcaChe

— UDP-based lookup, short timeout

* Alternative approach
— A priori guess is siblings/children have content
— Nodes share hash table of cached content with parent / siblings

— Probabilistic check (false positives) okay, as actual ICP lookup to
neighbor could just return false



Hash tables in P2P file-sharing

 Two-layer network (e.g., Gnutella, Kazaa)

— Ultrapeers are more stable, not NATted, higher bandwidth
— Leaf nodes connect with 1 or more ultrapeers

* Ultrapeers handle content searchers
— Leaf nodes send hash table of content to ultrapeers
— Search requests flooded through ultrapeer network

— When ultrapeer gets request, checks hash tables of its
children for match



Data partitioning

Network load balancing: All machines are equal L

Data partitioning: Machines store different content

Non-hash-based solution

— “Directory” server maintains mapping from O(entries) to
machines (e.g., Network file system, Google File System)

— Named data can be placed on any machine

Hash-based solution
— Nodes maintain mappings from O(buckets) to machines
— Data placed on the machine that owns the name’s bucket



Examples of data partitioning

e Akamai
— 1000 clusters around Internet, each >= 1 servers
— Hash (URL's domain) to map to one server
— Akamai DNS aware of hash function, returns machine that
1. isin geographically-nearby cluster

2. manages particular customer domain

* Memcached (Facebook, Twitter, ...)
— Employ k machines for in-memory key-value caching
— On read:
* Check memcache
* If miss, read data from DB, write to memcache
— On write: invalidate cache, write data to DB



How Akamai Works — Already Cached

cnn.com (content provider) DNS root server Akamai server

html ~ Akamai high-level
LL NS server

- Akamai low-level DNS
L server

Nearby
hash-chosen

ET Akamai
_ ij server

Cluster

End-user

GET /cnn.com/foo.jpg

15



Hashing Techniques



Basic Hash Techniques

* Simple approach for uniform data
— If data distributed uniformly over N, for N >> n
— Hash fn = <data> mod n
— Fails goal of uniformity if data not uniform

* Non-uniform data, variable-length strings
— Typically split strings into blocks

— Perform rolling computation over blocks
* CRC32 checksum
* Cryptographic hash functions (SHA-1 has 64 byte blocks)



Applying Basic Hashing

* Consider problem of data partition:

— Given document X, choose one of k servers to use

e Suppose we use modulo hashing
— Number servers 1..k

— Place X on server i = (X mod k)
* Problem? Data may not be uniformly distributed

— Place X on server i = hash (X) mod k
* Problem?
— What happens if a server fails or joins (k 2 kt1)?
— What is different clients has different estimate of k?

— Answer: All entries get remapped to new nodes!



Consistent Hashing

lookup (key,)
':/ ’: ““ ;\
G Ry = = H A A &
key,=value
key, key, keys

* Consistent hashing partitions key-space among nodes

* Contact appropriate node to lookup/store key
— Blue node determines red node is responsible for key,

— Blue node sends lookup or insert to red node



Consistent Hashing

e e
O o *e e
L4 . 3 * & .
. . .
. ’ . .

Bl & =l H & & R
00001 0010 0110 1010 | 1100 1110 1111
0001 0100 1011
* Partitioning key-space among nodes
— Nodes choose random identifiers: e.g., hash(IP)
— Keys randomly distributed in ID-space: e.g., hash(URL)

— Keys assigned to node “nearest” in ID-space

— Spreads ownership of keys evenly across nodes



Consistent Hashing

* Construction ”
— Assign C hash buckets to random points

on mod 2" circle; hash key size = n 12 4

— Map object to random position on circle

— Hash of object = closest clockwise bucket v Q

e Desired features

— Balanced: No bucket has disproportionate number of objects

— Smoothness: Addition/removal of bucket does not cause
movement among existing buckets (only immediate buckets)

— Spread and load: Small set of buckets that lie near object



Bloom Filters

e Data structure for probabilistic membership testing
— Small amount of space, constant time operations
— False positives possible, no false negatives

— Useful in per-flow network statistics, sharing information
between cooperative caches, etc.

* Basic idea using hash fn’s and bit array
— Use k independent hash functions to map item to array

— If all array elements are 1, it’s present. Otherwise, not

{x,y, 2}




Bloom Filters

Start with an m bit array, filled with Os.

010101010101 0101010]10]10]J0}0]O0]}O

To insert, hash each item k times. If , set

ort1y1o01o0y1joyp1yo0joy1y11110j1111]80

To check if y is in set, check array at . All k values must be 1.

ot1y1o01o0g1jop1yo0joy1y11110j1111]80

Possible to have a false positive: all k values are 1, but y is not in set.

ot1y1o01o0y1jojp1y1o0joy1y11110j1111]80




Today’s outline

e Uses of hashing
— Equal-cost multipath routing in switches
— Network load balancing in server clusters
— Per-flow statistics in switches (QoS, IDS)
— Caching in cooperative CDNs and P2P file sharing
— Data partitioning in distributed storage services

e Various hashing strategies
— Modulo hashing
— Consistent hashing
— Bloom Filters



