Link-State Routing
Reading: Sections 4.2 and 4.3.4

COS 461: Computer Networks
Spring 2011

Mike Freedman
http://www.cs.princeton.edu/courses/archive/springl1/cos461/

Goals of Today’s Lecture

Inside a router
— Control plane: routing protocols

— Data plane: packet forwarding

Path selection
— Minimum-hop and shortest-path routing
— Dijkstra’s algorithm

Topology change
— Using beacons to detect topology changes
— Propagating topology information

Routing protocol: Open Shortest Path First (OSPF)

What is Routing?

* A famous quotation from RFC 791

“A name indicates what we seek.
An address indicates where it is.
A route indicates how we get there.”
-- Jon Postel

Routing vs. Forwarding

* Routing: control plane
— Computing paths the packets will follow
— Routers talking amongst themselves
—Individual router creating a forwarding table

* Forwarding: data plane
— Directing a data packet to an outgoing link
—Individual router using a forwarding table

& —6 -6

Data and Control Planes

control plane
data plane Processor </

=

Line card Line card

Switching

Line card Line card

Fabric

Line card Line card

Where do Forwarding Tables Come From?

* Routers have forwarding tables
— Map IP prefix to outgoing link(s)

* Entries can be statically configured
—E.g., “map 12.34.158.0/24 to Serial0/0.1”

e But, this doesn’t adapt
— To failures
— To new equipment

— To the need to balance load

* That is where routing protocols come in

Recall the Internet layering model

host host

HTTP message

P packet

Ethernet Ethernet SONET SONET Ethernet Ethernet
interface J interface interface WM interface interface [interface

Recall the Internet layering model

host

Control Plane:

Pick best Announce all
route possible routes

CPU §; CPU

IZ M Switching B H Switching
Fabric Fabric

Install chosen
e Data Plane:

Forward along
1 route/path

host

Computing Paths Between Routers

* Routers need to know two things
— Which router to use to reach a destination prefix
— Which outgoing interface to use to reach that router

u z
& >3 >&& &> 12.34.158.0/24
Interface along Router z that can
the path to z reach destination

* Today’s class: how routers reach each other
— How u knows how to forward packets toward z

Computing the Shortest Paths

Assuming you already know
the topology

Shortest-Path Routing

e Path-selection model
— Destination-based
— Load-insensitive (e.g., static link weights)
— Minimum hop count or sum of link weights

3 =
e
5

Nt

Shortest-Path Problem

* Given: network topology with link costs
— ¢(x,y): link cost from node x to node y
— Infinity if x and y are not direct neighbors

 Compute: least-cost paths to all nodes

— From a given source u to all other nodes
— p(v): predecessor node along path from source to v

Dijkstra’s Shortest-Path Algorithm

* |terative algorithm
— After k iterations, know least-cost path to k nodes

* S: nodes whose least-cost path definitively known

— Initially, S = {u} where u is the source node
— Add one node to S in each iteration

* D(v): current cost of path from source to node v
— Initially, D(v) = ¢(u,v) for all nodes v adjacent to u
— ... and D(v) = o= for all other nodes v
— Continually update D(v) as shorter paths are learned

Dijsktra’s Algorithm

Initialization: S:
S ={u}
for all nodes v D(v):

if (v is adjacent to u)

Least cost path known

Known shortest cost
from source to v

else D(v) = C(w,v): Known cost from w to v

1
2
3
4
3) D(v) = c(u,v)
6
7
8

Loop: Do
9 find w not in S with the smallest D(w)
10 addwto S

11 update D(v) for all v adjacent to w and not in S:
12 D(v) = min{D(v), D(w) + c(w,V)}
13 until all nodes in S

Dijkstra’s Algorithm Example

'3\{ .>\$\‘
0>

16

Dijkstra’s Algorithm Example

Loop: Do

find w not in S with the smallest D(w)
addwto S
forall v adj to w && not in S:

D(v) = min{ D(v), D(w) + c(w,v) }
until all nodes in S

Dijkstra’s Algorithm Example

Shortest-Path Tree

e Shortest-path tree from u * Forwarding table at u

link

-+ O N X X S <

(uv)
(uw)
(uw)
(uv)
(uv)
(uw)
(uw)

18

Learning the Topology

By the routers talk amongst
themselves

Link-State Routing

Each router keeps track of its incident links
— Whether the link is up or down
— The cost on the link

Each router broadcasts the link state
— To give every router a complete view of the graph

Each router runs Dijkstra’s algorithm

— To compute the shortest paths
— ... and construct the forwarding table

Example protocols

— Open Shortest Path First (OSPF)
— Intermediate System — Intermediate System (IS-IS)

Detecting Topology Changes

* Beaconing
— Periodic “hello” messages in both directions
— Detect a failure after a few missed “hellos”

“hello”

&—S

e Performance trade-offs

— Detection speed
— Overhead on link bandwidth and CPU

— Likelihood of false detection

Broadcasting the Link State

* Flooding
— Node sends link-state information out its links
— And then the next node sends out all of its links
— ... except the one(s) where the information arrived

Broadcasting the Link State

* Reliable flooding
— Ensure all nodes receive link-state information
— ... and that they use the latest version
* Challenges
— Packet loss
— Out-of-order arrival
* Solutions
— Acknowledgments and retransmissions

— Sequence numbers
— Time-to-live for each packet

When to Initiate Flooding

* Topology change
— Link or node failure

— Link or node recovery

* Configuration change

— Link cost change

* Periodically

— Refresh the link-state information
— Typically (say) 30 minutes
— Corrects for possible corruption of the data

When the Routers Disagree

(during transient periods)

Convergence

e Getting consistent routing information to all nodes

— E.g., all nodes having the same link-state database

e Consistent forwarding after convergence
— All nodes have the same link-state database
— All nodes forward packets on shortest paths

— The next router on the path forwards to the next hop

Transient Disruptions

* Detection delay
— A node does not detect a failed link immediately
— ... and forwards data packets into a “blackhole”
— Depends on timeout for detecting lost hellos

Transient Disruptions

* |Inconsistent link-state database
— Some routers know about failure before others
— The shortest paths are no longer consistent

— Can cause transient forwarding loops

Convergence Delay

* Sources of convergence delay
— Detection latency
— Flooding of link-state information
— Shortest-path computation
— Creating the forwarding table

* Performance during convergence period
— Lost packets due to blackholes and TTL expiry
— Looping packets consuming resources
— Out-of-order packets reaching the destination

* Very bad for VolP, online gaming, and video

Reducing Convergence Delay

Faster detection
— Smaller hello timers
— Link-layer technologies that can detect failures

Faster flooding
— Flooding immediately
— Sending link-state packets with high-priority

Faster computation
— Faster processors on the routers
— Incremental Dijkstra’s algorithm

Faster forwarding-table update
— Data structures supporting incremental updates

Scaling Link-State Routing

* Overhead of link-state routing
— Flooding link-state packets throughout the network
— Running Dijkstra’s shortest-path algorithm

* Introducing hierarchy through “areas”

area /Z/

border
router

31

Conclusions

* Routing is a distributed algorithm
— React to changes in the topology
— Compute the paths through the network

* Shortest-path link state routing
— Flood link weights throughout the network
— Compute shortest paths as a sum of link weights
— Forward packets on next hop in the shortest path

* Convergence process
— Changing from one topology to another
— Transient periods of inconsistency across routers

