Queuing and Queue Management
Reading: Sections 6.2, 6.4, 6.5

COS 461: Computer Networks
Spring 2011

Mike Freedman
http://www.cs.princeton.edu/courses/archive/springl1/cos461/

Goals of Today’s Lecture

Router Queuing Models
— Limitations of FIFO and Drop Tail

Scheduling Policies

— Fair Queuing

Drop policies
— Random Early Detection (of congestion)

— Explicit Congestion Notification (from routers)

Some additional TCP mechanisms

Router Data and Control Planes

control plane

data plane Processor </

N

Line card Line card

Switching

Line card Line card

Fabric

Line card Line card

Line Cards (Interface Cards, Adaptors)

* Interfacing
— Physical link
— Switching fabric
* Packet handling
— Packet forwarding

— Decrement time-to-live
— Buffer management

lookup

al
-

JTUISuRI]

Recelve

Packet Switching and Forwarding

Link 1, ingress Link 1, egress
| I I - > Choose?\“ ----------- :’ I I >
Egress|'i-. A4

Link 2

Link 2, ingress | Choose| .-
| Egress|t-. ¥ ¥

I I Link 2, egress

Link 3, ingress Choose‘{;j?““"y
| Egress|~. 7 F

I I Link 3, egress

Link 4, ingress ChooSeé,_géiff:““"f g | I Link 4, egress
| Egress !

Router Design Issues

* Scheduling discipline
— Which packet to send?
— Some notion of fairness? Priority?

* Drop policy
— When should you discard a packet?
— Which packet to discard?

* Need to balance throughput and delay

— Huge buffers minimize drops, but add to queuing
delay (thus higher RTT, longer slow start, ...)

FIFO Scheduling and Drop-Tail

e Access to the bandwidth: first-in first-out queue

— Packets only differentiated when they arrive

-

B

>

e Access to the buffer space: drop-tail queuing

— If the queue is full, drop the incoming packet

X

>

Problems with tail drop

* Under stable conditions, queue almost always full
— Leads to high latency for all traffic

* Possibly unfair for flows with small windows

— Larger flows may fast retransmit (detecting loss through
Trip Dup ACKs), small flows may have to wait for timeout

 Window synchronization
— More on this later...

X

Scheduling Policies

(Weighted) Fair Queuing
(and Class-based Quality of Service)

Fair Queuing (FQ)

Maintains separate queue per flow

Ensures no flow consumes more than its 1/n share
— Variation: weighted fair queuing (WFQ)
If all packets were same length, would be easy

If non-work-conserving (resources can go idle), also
would be easy, yet lower utilization

Fowt | | | | [[] d
R
Flow2 | | | [[]| R(:)l:)?n Egress Link
Flow3 | | | [[]| Service
Fow4 | | | | [[]

Fair Queuing Basics

* Track how much time each flow has used link

— Compute time used if it transmits next packet

* Send packet from flow that will have lowest
use if it transmits

— Why not flow with smallest use so far?
— Because next packet may be huge!

12

FQ Algorithm

* Imagine clock tick per bit, then tx time ~ length
Finish time F, = max (F._,, Arrive time A,) + Length P,

* Calculate estimated F, for all queued packets

* Transmit packet with lowest F, next

Flow 1 Flow 2 Output

1

FQ Algorithm (2)

* Problem: Can’t preempt current tx packet

* Result: Inactive flows (A > F._,) are penalized
— Standard algorithm considers no history
— Each flow gets fair share only when packets queued

Flow 1 Flow 2

(arriving) (transmitting) Output

e m

13

FQ Algorithm (3)

 Approach: give more promptness to flows utilizing
less bandwidth historically

* Bid B,=max (F_;, A, —08) +P,

— Intuition: with larger 6, scheduling decisions calculated by
last tx time F._; more frequently, thus preferring slower flows

* FQ achieves max-min fairness

— First priority: maximize the minimum rate of any active flows

— Second priority: maximize the second min rate, etc.

Uses of (W)FQ

e Scalability
— # queues must be equal to # flows

— But, can be used on edge routers, low speed links, or
shared end hosts

* (W)FQ can be for classes of traffic, not just flows
— Use IP TOS bits to mark “importance”

— Part of “Differentiated Services” architecture for
“Quality-of-Service” (QoS)

Drop Policy

Drop Tail
Random Early Detection (RED)
Explicit Congestion Notification (ECN)

Bursty Loss From Drop-Tail Queuing

 TCP depends on packet loss
— Packet loss is indication of congestion
— And TCP drives network into loss by additive rate increase

* Drop-tail queuing leads to bursty loss

— If link is congested, many packets encounter full queue
— Thus, loss synchronization:

* Many flows lose one or more packets

* |In response, many flows divide sending rate in half

l[——>

Slow Feedback from Drop Tail

* Feedback comes when buffer is completely full
— ... even though the buffer has been filling for a while

* Plus, the filling buffer is increasing RTT

— ... making detection even slower

 Might be better to give early feedback
— And get 1-2 connections to slow down before it’s too late

l[——>

Random Early Detection (RED)

e Basicidea of RED
— Router notices that queue is getting backlogged
— ... and randomly drops packets to signal congestion

e Packet drop probability
— Drop probability increases as queue length increases
— Else, set drop probability as function of avg queue length
and time since last drop

1

Drop
Probability

0

Average Queue Length

Properties of RED

Drops packets before queue is full
— In the hope of reducing the rates of some flows

Drops packet in proportion to each flow’s rate
— High-rate flows have more packets
— ... and, hence, a higher chance of being selected

Drops are spaced out in time
— Which should help desynchronize the TCP senders

Tolerant of burstiness in the traffic
— By basing the decisions on average queue length

Problems With RED

 Hard to get tunable parameters just right
— How early to start dropping packets?
— What slope for increase in drop probability?
— What time scale for averaging queue length?

 RED has mixed adoption in practice
— |f parameters aren’t set right, RED doesn’t help
— Hard to know how to set the parameters

 Many other variations in research community
— Names like “Blue” (self-tuning), “FRED”...

Feedback: From loss to notification

e Early dropping of packets
— Good: gives early feedback
— Bad: has to drop the packet to give the feedback

* Explicit Congestion Notification
— Router marks the packet with an ECN bit
— Sending host interprets as a sign of congestion

Explicit Congestion Notification

 Must be supported by router, sender, AND receiver
— End-hosts determine if ECN-capable during TCP handshake

 ECN involves all three parties (and 4 header bits)
1. Sender marks “ECN-capable” when sending

2. If router sees “ECN-capable” and experiencing congestion,
router marks packet as “ECN congestion experienced”

3. If receiver sees “congestion experienced”, marks “ECN echo”
flag in responses until congestion ACK’d

4. If sender sees “ECN echo”, reduces cwnd and marks
“congestion window reduced” flag in next TCP packet

* Why extra ECN flag? Congestion could happen in either
direction, want sender to react to forward direction

* Why CRW ACK? ECN-echo could be lost, but we ideally
only respond to congestion in forward direction

Other TCP Mechanisms

Nagle’s Algorithm and Delayed ACK

Nagle’s Algorithm

Wait if the amount of data is small
— Smaller than Maximum Segment Size (MSS)

And some other packet is already in flight
— |.e., still awaiting the ACKs for previous packets

That is, send at most one small packet per RTT

— ... by waiting until all outstanding ACKs have arrived
ACK

Bl BN v Il I N

Influence on performance
— Interactive applications: enables batching of bytes
— Bulk transfer: transmits in MSS-sized packets anyway

Nagle’s Algorithm

e Wait if the amount of data is small
— Smaller than Maximum Segment Size (MSS)

 And some other packet is already in flight

Turning Nagle Off

void
tcp nodelay (int s)
{

int n = 1;

if (setsockopt (s, IPPROTO TCP, TCP NODELAY,
(char *) &n, sizeof (n)) < 0)
warn ("TCP_NODELAY: 2%m\n");

Motivation for Delayed ACK

e TCP traffic is often bidirectional
— Data traveling in both directions
— ACKs traveling in both directions

* ACK packets have high overhead
— 40 bytes for the IP header and TCP header
— ... and zero data traffic

* Piggybacking is appealing
— Host B can send an ACK to host A
— ... as part of a data packet from B to A

TCP Header Allows Piggybacking

Source port Destination port
Sequence number
Flags: EI\I(\IN Acknowledgment
RST HdrLen| o | Flags | Advertised window
Egé Checksum Urgent pointer
ACK

Options (variable)

Example of Piggybacking

B has data to send

B doesn’t have data to send

A has data to send D

Increasing Likelihood of Piggybacking

e Example: ssh or even HTTP

— Host A types command A B
— Host B receives and executes the Data
command CK
Data’\’A
— ... and then data are generated S
— Would be nice if B could send the Day,
ACK with the new data ¢ T T ACK
* Increase piggybacking <D/—
— TCP allows the receiver to wait to 140
send the ACK N

— ... in the hope that the host will
have data to send

Delayed ACK

* Delay sending an ACK

— Upon receiving a packet, the host B sets a timer
* Typically, 200 msec or 500 msec

— If B’s application generates data, go ahead and send
* And piggyback the ACK bit

— If the timer expires, send a (non-piggybacked) ACK

* Limiting the wait
— Timer of 200 msec or 500 msec
— ACK every other full-sized packet

Conclusions

* Congestion is inevitable
— Internet does not reserve resources in advance
— TCP actively tries to push the envelope

— TCP can react to congestion (multiplicative decrease)

e Active Queue Management can further help
— Random Early Detection (RED)
— Explicit Congestion Notification (ECN)

e Fundamental tensions

— Feedback from the network?

— Enforcement of “TCP friendly” behavior? Other scheduling
policies (FQ) can given stronger guarantees

