

Congestion Control

Reading: Sections 6.1-6.4

COS 461: Computer Networks
Spring 2011

Mike Freedman
http://www.cs.princeton.edu/courses/archive/spring11/cos461/

Goals of Today's Lecture

- Congestion in IP networks
 - Unavoidable due to best-effort service model
 - IP philosophy: decentralized control at end hosts
- Congestion control by the TCP senders
 - Infers congestion is occurring (e.g., from packet losses)
 - Slows down to alleviate congestion, for the greater good
- TCP congestion-control algorithm
 - Additive-increase, multiplicative-decrease
 - Slow start and slow-start restart

No Problem Under Circuit Switching

- Source establishes connection to destination
 - Nodes reserve resources for the connection
 - Circuit rejected if the resources aren't available
 - Cannot have more than the network can handle

IP Best-Effort Design Philosophy

- Best-effort delivery
 - Let everybody send
 - Network tries to deliver what it can
 - ... and just drop the rest

Congestion is Unavoidable

- Two packets arrive at same time
 - Router can only transmit one: must buffer or drop other
- If many packets arrive in short period of time
 - Router cannot keep up with the arriving traffic
 - Buffer may eventually overflow

The Problem of Congestion

- What is congestion? Load is higher than capacity
- What do IP routers do? Drop the excess packets
- Why bad? Wasted bandwidth for retransmissions

Increase in load that results in a *decrease* in useful work done

Ways to Deal With Congestion

Ignore the problem

- Many dropped (and retransmitted) packets
- Can cause congestion collapse

Reservations, like in circuit switching

- Pre-arrange bandwidth allocations
- Requires negotiation before sending packets

Pricing

- Don't drop packets for the high-bidders
- Requires a payment model, and low-bidders still dropped

Dynamic adjustment (TCP)

- Every sender infers the level of congestion
- Each adapts its sending rate "for the greater good"

Many Important Questions

- How does the sender know there is congestion?
 - Explicit feedback from the network?
 - Inference based on network performance?
- How should the sender adapt?
 - Explicit sending rate computed by the network?
 - End host coordinates with other hosts?
 - End host thinks globally but acts locally?
- What is the performance objective?
 - Maximizing goodput, even if some users suffer more?
 - Fairness? (Whatever that means!)
- How fast should new TCP senders send?

Inferring From Implicit Feedback

- What does the end host see?
- What can the end host change?

Where Congestion Happens: Links

- Simple resource allocation: FIFO queue & drop-tail
- Access to the bandwidth: first-in first-out queue
 - Packets transmitted in the order they arrive

- Access to the buffer space: drop-tail queuing
 - If the queue is full, drop the incoming packet

How it Looks to the End Host

Delay: Packet experiences high delay

Loss: Packet gets dropped along path

How does TCP sender learn this?

Delay: Round-trip time estimate

Loss: Timeout and/or duplicate acknowledgments

What Can the End Host Do?

- Upon detecting congestion (well, packet loss)
 - Decrease the sending rate
 - End host does its part to alleviate the congestion
- But, what if conditions change?
 - If bandwidth becomes available, unfortunate if host remains sending at low rate
- Upon not detecting congestion
 - Increase sending rate, a little at a time
 - And see if packets are successfully delivered

TCP Congestion Window

- Each TCP sender maintains a congestion window
 - Max number of bytes to have in transit (not yet ACK'd)
- Adapting the congestion window
 - Decrease upon losing a packet: backing off
 - Increase upon success: optimistically exploring
 - Always struggling to find right transfer rate

Tradeoff

- Pro: avoids needing explicit network feedback
- Con: continually under- and over-shoots "right" rate

Additive Increase, Multiplicative Decrease (AIMD)

- How much to adapt?
 - Additive increase: On success of last window of data, increase window by 1 Max Segment Size (MSS)
 - Multiplicative decrease: On loss of packet, divide congestion window in half
- Much quicker to slow than speed up!
 - Over-sized windows (causing loss) are much worse than under-sized windows (causing lower thruput)
 - AIMD: A necessary condition for stability of TCP

Leads to the TCP "Sawtooth"

Receiver Window vs. Congestion Window

- Flow control
 - Keep a fast sender from overwhelming a slow receiver
- Congestion control
 - Keep a set of senders from overloading the network
- Different concepts, but similar mechanisms
 - TCP flow control: receiver window
 - TCP congestion control: congestion window
 - Sender TCP window =

min { congestion window, receiver window }

How Should a New Flow Start?

Start slow (a small CWND) to avoid overloading network

"Slow Start" Phase

- Start with a small congestion window
 - Initially, CWND is 1 MSS
 - So, initial sending rate is MSS / RTT
- Could be pretty wasteful
 - Might be much less than actual bandwidth
 - Linear increase takes a long time to accelerate
- Slow-start phase (really "fast start")
 - Sender starts at a slow rate (hence the name)
 - ... but increases rate exponentially until the first loss

Slow Start in Action

Double CWND per round-trip time

Slow Start and the TCP Sawtooth

- So-called because TCP originally had no congestion control
 - Source would start by sending an entire receiver window
 - Led to congestion collapse!

Two Kinds of Loss in TCP

Timeout

- Packet n is lost and detected via a timeout
 - When? n is last packet in window, or all packets in flight lost
- After timeout, blasting entire CWND would cause another burst
- Better to start over with a low CWND

Triple duplicate ACK

- Packet n is lost, but packets n+1, n+2, etc. arrive
 - How detected? Multiple ACKs that receiver waiting for n
 - When? Later packets after n received
- After triple duplicate ACK, sender quickly resends packet n
- Do a multiplicative decrease and keep going

Repeating Slow Start After Timeout

Slow-start restart: Go back to CWND of 1, but take advantage of knowing the previous value of CWND.

Repeating Slow Start After Idle Period

- Suppose a TCP connection goes idle for a while
- Eventually, the network conditions change
 - Maybe many more flows are traversing the link
- Dangerous to start transmitting at the old rate
 - Previously-idle TCP sender might blast network
 - ... causing excessive congestion and packet loss
- So, some TCP implementations repeat slow start
 - Slow-start restart after an idle period

TCP Achieves Some Notion of Fairness

- Effective utilization is not only goal
 - We also want to be fair to various flows
 - ... but what does that mean?
- Simple definition: equal shares of the bandwidth
 - N flows that each get 1/N of the bandwidth?
 - But, what if flows traverse different paths?
 - Result: bandwidth shared in proportion to RTT

What About Cheating?

- Some folks are more fair than others
 - Running multiple TCP connections in parallel (BitTorrent)
 - Modifying the TCP implementation in the OS
 - Some cloud services start TCP at > 1 MSS
 - Use the User Datagram Protocol
- What is the impact
 - Good guys slow down to make room for you
 - You get an unfair share of the bandwidth

Possible solutions?

- Routers detect cheating and drop excess packets?
- Per user/customer failness?
- Peer pressure?

Conclusions

- Congestion is inevitable
 - Internet does not reserve resources in advance
 - TCP actively tries to push the envelope
- Congestion can be handled
 - Additive increase, multiplicative decrease
 - Slow start and slow-start restart
- Active Queue Management can help
 - Random Early Detection (RED)
 - Explicit Congestion Notification (ECN)
- Fundamental tensions
 - Feedback from the network?
 - Enforcement of "TCP friendly" behavior?