Congestion Control
Reading: Sections 6.1-6.4

COS 461: Computer Networks
Spring 2011

Mike Freedman
http://www.cs.princeton.edu/courses/archive/springl1/cos461/

Goals of Today’s Lecture

* Congestion in IP networks
— Unavoidable due to best-effort service model
— IP philosophy: decentralized control at end hosts

e Congestion control by the TCP senders
— Infers congestion is occurring (e.g., from packet losses)

— Slows down to alleviate congestion, for the greater good

* TCP congestion-control algorithm
— Additive-increase, multiplicative-decrease
— Slow start and slow-start restart

No Problem Under Circuit Switching

e Source establishes connection to destination
— Nodes reserve resources for the connection
— Circuit rejected if the resources aren’t available
— Cannot have more than the network can handle

|IP Best-Effort Design Philosophy

e Best-effort delivery
— Let everybody send
— Network tries to deliver what it can
—...and just drop the rest

source destination

IP network .

Congestion is Unavoidable

* Two packets arrive at same time
— Router can only transmit one: must buffer or drop other

* If many packets arrive in short period of time
— Router cannot keep up with the arriving traffic
— Buffer may eventually overflow

The Problem of Congestion
 What is congestion? Load is higher than capacity
 What do IP routers do? Drop the excess packets

* Why bad? Wasted bandwidth for retransmissions

A

3 . Increase in load that
congestion)

Goodput collapse” results in a decrease
in useful work done

Load

Ways to Deal With Congestion

lgnore the problem
— Many dropped (and retransmitted) packets
— Can cause congestion collapse

Reservations, like in circuit switching
— Pre-arrange bandwidth allocations
— Requires negotiation before sending packets

Pricing
— Don’t drop packets for the high-bidders
— Requires a payment model, and low-bidders still dropped

Dynamic adjustment (TCP)
— Every sender infers the level of congestion
— Each adapts its sending rate “for the greater good”

Many Important Questions

How does the sender know there is congestion?
— Explicit feedback from the network?
— Inference based on network performance?

How should the sender adapt?

— Explicit sending rate computed by the network?
— End host coordinates with other hosts?

— End host thinks globally but acts locally?

What is the performance objective?
— Maximizing goodput, even if some users suffer more?
— Fairness? (Whatever that means!)

How fast should new TCP senders send?

Inferring From Implicit Feedback

e What does the end host see?

 What can the end host change?

Where Congestion Happens: Links

* Simple resource allocation: FIFO queue & drop-tail

e Access to the bandwidth: first-in first-out queue

— Packets transmitted in the order they arrive

-

B

>

e Access to the buffer space: drop-tail queuing

— If the queue is full, drop the incoming packet

X

>

How it Looks to the End Host

* Delay: Packet experiences high delay
* Loss: Packet gets dropped along path

* How does TCP sender learn this?
— Delay: Round-trip time estimate
— Loss: Timeout and/or duplicate acknowledgments

X

What Can the End Host Do?

* Upon detecting congestion (well, packet loss)
— Decrease the sending rate
— End host does its part to alleviate the congestion

e But, what if conditions change?

— If bandwidth becomes available, unfortunate if host
remains sending at low rate

* Upon not detecting congestion
— Increase sending rate, a little at a time
— And see if packets are successfully delivered

TCP Congestion Window

 Each TCP sender maintains a congestion window
— Max number of bytes to have in transit (not yet ACK'd)

* Adapting the congestion window
— Decrease upon losing a packet: backing off
— Increase upon success: optimistically exploring
— Always struggling to find right transfer rate

 Tradeoff

— Pro: avoids needing explicit network feedback
— Con: continually under- and over-shoots “right” rate

Additive Increase, Multiplicative Decrease
(AIMD)

* How much to adapt?

— Additive increase: On success of last window of data,
increase window by 1 Max Segment Size (MSS)

— Multiplicative decrease: On loss of packet, divide
congestion window in half

* Much quicker to slow than speed up!

— Over-sized windows (causing loss) are much worse
than under-sized windows (causing lower thruput)

— AIMD: A necessary condition for stability of TCP

Leads to the TCP “Sawtooth”

Window

Loss

////

Receiver Window vs. Congestion Window

* Flow control
— Keep a fast sender from overwhelming a slow receiver
e Congestion control

— Keep a set of senders from overloading the network

* Different concepts, but similar mechanisms
— TCP flow control: receiver window
— TCP congestion control: congestion window
— Sender TCP window =
min { congestion window, receiver window }

17

How Should a New Flow Start?

Start slow (a small CWND) to avoid overloading network

Window
Loss

4

A

</

/ e

/

t

But, could take a long
time to get started!

“Slow Start” Phase

e Start with a small congestion window
— Initially, CWND is 1 MSS
— So, initial sending rate is MSS / RTT

* Could be pretty wasteful

— Might be much less than actual bandwidth
— Linear increase takes a long time to accelerate

e Slow-start phase (really “fast start”)
— Sender starts at a slow rate (hence the name)
— ... but increases rate exponentially until the first loss

Slow Start in Action

Double CWND per round-trip time

/ \o’o

Slow Start and the TCP Sawtooth

Window
Loss

v

A

/

~

8 halved

<
l L

Exponential "slow start”

{

e So-called because TCP originally had no congestion control

— Source would start by sending an entire receiver window

— Led to congestion collapse!

Two Kinds of Loss in TCP

* Timeout
— Packet nis lost and detected via a timeout
* When? nis last packet in window, or all packets in flight lost
— After timeout, blasting entire CWND would cause another burst
— Better to start over with a low CWND

* Triple duplicate ACK
— Packet n is lost, but packets n+1, n+2, etc. arrive
 How detected? Multiple ACKs that receiver waiting for n
* When? Later packets after n received
— After triple duplicate ACK, sender quickly resends packet n
— Do a multiplicative decrease and keep going

Repeating Slow Start After Timeout

Window .
N timeout

/

vz

XY slow start until
W reaching half of

previous cwnd.

Slow-start restart: Go back to CWND of 1, but take
advantage of knowing the previous value of CWND.

Repeating Slow Start After Idle Period

Suppose a TCP connection goes idle for a while

Eventually, the network conditions change
— Maybe many more flows are traversing the link

Dangerous to start transmitting at the old rate
— Previously-idle TCP sender might blast network
— ... causing excessive congestion and packet loss

So, some TCP implementations repeat slow start
— Slow-start restart after an idle period

TCP Achieves Some Notion of Fairness

e Effective utilization is not only goal
— We also want to be fair to various flows
— ... but what does that mean?

* Simple definition: equal shares of the bandwidth

— N flows that each get 1/N of the bandwidth?
— But, what if flows traverse different paths?

— Result: bandwidth shared in proportion to RTT

a

!

>

/

S

What About Cheating?

* Some folks are more fair than others
— Running multiple TCP connections in parallel (BitTorrent)
— Modifying the TCP implementation in the OS
* Some cloud services start TCP at > 1 MSS
— Use the User Datagram Protocol

* What is the impact

— Good guys slow down to make room for you
— You get an unfair share of the bandwidth

* Possible solutions?
— Routers detect cheating and drop excess packets?

— Per user/customer failness?
— Peer pressure?

Conclusions

Congestion is inevitable
— Internet does not reserve resources in advance
— TCP actively tries to push the envelope

Congestion can be handled

— Additive increase, multiplicative decrease
— Slow start and slow-start restart

Active Queue Management can help
— Random Early Detection (RED)
— Explicit Congestion Notification (ECN)

Fundamental tensions
— Feedback from the network?
— Enforcement of “TCP friendly” behavior?

