Transport Protocols
Reading: Sections 5.1 and 5.2

COS 461: Computer Networks
Spring 2011

Mike Freedman

http://www.cs.princeton.edu/courses/archive/springl1/cos461/

Goals for Today’s Lecture

* Principles underlying transport-layer services
— (De)multiplexing
— Detecting corruption
— Reliable delivery
— Flow control

* Transport-layer protocols in the Internet
— User Datagram Protocol (UDP)
* Simple (unreliable) message delivery
— Transmission Control Protocol (TCP)
* Reliable bidirectional stream of bytes

Recall the Internet layering model

host host

HTTP message

TCP segment

P packet

Ethernet Ethernet SONET SONET Ethernet Ethernet
interface J interface interface WM interface interface [interface

Two Basic Transport Features
o I"#$%&'%"()*+, port numbers

Server host 1.2.3.4!

Client host!
58T Service requesttd
: 1.2.3.4:80 (p)!

ient!
@ : Request froni

=>?0>7?0@ABACAD?0EF 80
=8AKALAE?0CD8K?0@ABA(KO

e -.[.01"2"3&/*, checksums

IP payload

~
detect corruption

User Datagram Protocol (UDP)

 Datagram messaging service
— Demultiplexing of messages: port numbers
— Detecting corrupted messages: checksum

* Lightweight communication between processes
— Send messages to and receive them from a socket
— Avoid overhead and delays of ordered, reliable delivery

SRC port DST port

checksum length

DATA

Why Would Anyone Use UDP?

Fine control over what data is sent and when
— As soon as app process writes into socket
— ... UDP will package data and send packet

No delay for connection establishment

— UDP blasts away without any formal preliminaries
— ... avoids introducing unnecessary delays

No connection state (no buffers, sequence #’s, etc.)
— Can scale to more active clients at once

Small packet header overhead (header only 8B long)

Popular Applications

e Simple query protocols like DNS
— Overhead of connection establishment is overkill

— Easier to have the application retransmit if needed
@

\’Z ?/()WWWW\
@(\N);)\/ / E
P

i AP 012.3.4.150
C—~_

——

* Multimedia streaming (VolP, video conferencing, ...)
— Retransmitting lost/corrupted packets is not worthwhile
— By time packet is retransmitted, it’s too late

Transmission Control Protocol (TCP)

Stream-of-bytes service: Send/recv streams, not msgs

Reliable, in-order delivery

— Checksums to detect corrupted data

— Sequence numbers to detect losses and reorder data

— Acknowledgments & retransmissions for reliable delivery

Connection oriented: Explicit set-up and tear-down
Flow control: Prevent overload of receiver’s buffer

Congestion control (next class!): Adapt for greater good

Breaking a Stream of Bytes
iInto TCP Segments

TCP “Stream of Bytes” Service

Host A
555 5
Host B \\\\\\\\
HEEEN N

... Emulated Using TCP “Segments”

Host A

0 9kg
1 91kg

TCP Data| ——___ Segment sent when:

1. Segment full (Max Segment Size),
\ 2. Not full, but times out, or
3. “Pushed” by application

TCP Data
HoST B

0 AAg |«
[949 |«
7 Ag |«
¢ kg e

08 K |«

TCP Segment

IP Data

P Hdr | /——>

TCP Data (segment) TCP Hdr

* |P packet
— No bigger than Maximum Transmission Unit (MTU)
— E.g., up to 1500 bytes on an Ethernet

 TCP packet
— |IP packet with a TCP header and data inside
— TCP header is typically 20 bytes long

* TCP segment
— No more than Maximum Segment Size (MSS) bytes
— E.g., up to 1460 consecutive bytes from the stream

Host A

ISN (initial sequence number)

Sequence Number

* Why not ISN of 0?

I8 9IAg

* Traditionally: Clock-based

Sequence number
= 1" byte

Host B

TCP Data

— What if port realloc’d and
old packet in flight?

— ISN based on clock, wraps
around every 4.55 hr

e Now: Randomized

TCF

— Hard to guess, thus harder
to “hijack” TCP connection

Reliable Delivery on a Lossy
Channel With Bit Errors

An Analogy: Talking on a Cell Phone

Alice and Bob talking on cell phones
— |f Bob couldn’t understand? Ask Alice to repeat
— If Bob hasn’t heard for a while?

Acknowledgments from receiver
— Positive: “okay” or “uh huh” or “ACK”

— Negative: “please repeat that” or “NACK”

Timeout by the sender (“stop and wait”)
— Don’t wait indefinitely w/o a response, whether ACK or NACK

Retransmission by the sender
— After receiving “NACK” from receiver
— After receiving no feedback from receiver

Challenges of Reliable Data Transfer

* QOver a perfectly reliable channel
— All data arrives in order, just as sent. Simple.

* Over a channel with bit errors
— All data arrives in order, but some bits corrupted
— Receiver detects errors and says “please repeat that”
— Sender retransmits corrupted data

* Over a lossy channel with bit errors
— Some data is missing, and some bits are corrupted
— Receiver detects errors but cannot always detect loss
— Sender must wait for acknowledgment (“ACK” or “OK”)
— ... and retransmit data after some time if no ACK arrives

TCP Support for Reliable Delivery

. 1"2"3205)20"../.Mghecksum

— Used to detect corrupted data at the receiver
— ...leading the receiver to drop the packet

. 1"2"320#)MM)*+014&uence number

— Used to detect a gap in the stream of bytes
— ... and for putting the data back in order

- N"3/0O".0P./+#0%/M201d4224ansmission

— Sender retransmits lost or corrupted data
— Two main ways to detect lost packets

TCP Acknowledgments

Host A

ISN (initial sequence number)

Sequence humber
= 1" byte

TCP Data

TCP
HDR

Host B

TCP Data

TCP

%

ACK sequence # =
next expected byte

Automatic Repeat reQuest (ARQ)

» Automatic Repeat reQuest

— Receiver sends ACK when it
receives packet

— Sender waits for ACK.

1P
—If ACK not received within some : %
timeout period, resend packet

Sender Receiver

3 Tir_rlg_out

| ACR—

« Simplest: “stop and walit”
—One packet at a time... Time

:"%

Timeout

_Timeout

Reasons for Retransmission

\etb
| ACK

Packet lost

~-{—Pack
N e

Timeout

_Timeout

-

\et"
K

ACK lost
DUPLICATE
PACKET

~{—Pack
.,

. Timeout

Timeout

“
N¢

| noK

Early timeout
DUPLICATE
PACKETS

How Long Should Sender Wait?

Too short? Wasted retransmissions
Too long? Excessive delays when packet lost

TCP sets timeout as function of Round Trip Time
— ACK should arrive after RTT + fudge factor for queuing

How does sender know RTT?
— Can estimate RTT by watching the ACKs

— Smooth estimate: Exponentially-weighted moving avg (EWMA)
e EstimatedRTT =a * EstimatedRTT + (1—a) * SampleRTT

— Compute timeout: TimeOut = 2 * EstimatedRTT

RTT (milliseconds)

350 4

300

Example RTT Estimation

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

250

200 -

150

100

8 15 22 29 36 43 50 57 64 71 78 85 92
time (seconnds)

—o— SampleRTT —#&— Estimated RTT

99

106

A Flaw in This Approach
ACK acknowledges receipt to data, not transmission

Consider a retransmission of a lost packet
— |f assume ACK with 1st transmission, SampleRTT too large

Consider a duplicate packet
— If assume ACK with 2nd transmission, SampleRTT too small

Simple solution in the Karn/Partridge algorithm
— Only collect samples for segments sent one single time

Increasing TCP throughput

Problem: Stop-and-wait + timeouts are inefficient
— Only one TCP segment “in flight” at time

Solution: Send multiple packets at once

Problem: How many w/o overwhelming receiver?
Solution: Determine “window size” dynamically

Flow Control via TCP Sliding Window

Motivation for Sliding Window

* Numerical example
— 1.5 Mbps link with a 45 msec round-trip time (RTT)
* Delay-bandwidth product is 67.5 Kbits (or 8 KBytes)
— But, sender can send at most one packet per RTT

* Assuming a segment size of 1 KB (8 Kbits)
e ... leads to 8 Kbits/seg / 45 Msec/seg | 182 Kbps
 Just one-eighth of the 1.5 Mbps link capacity

a

ﬁ - =

Sliding Window

* Allow a larger amount of data “in flight”
— Sender can get ahead of receiver, though not too far

Sending process!

TCPY | ast byte writterN TCP! ﬁst byte read!

A V' V' V'

Last byte ACKed! Next byte expected!

Last byte sent! Last byte received!

Receiver Buffering

e Window size
— Amount that can be sent w/o ACK, because receiver can buffer

e Receiver advertises window to receiver
— Tells amount of free space left (in 5Q2"M
— Sender agrees not to exceed this amount

Window Size

A
v

Sender

< »

Data ACKOd !Outstanding Data OK Data not OK
Un- ackOddata to send to send yet

Solution to timeout inefficiency:
Fast Retransmission

e Better solution possible under sliding window
— Although packet n might have been lost
— ... packets n+1, n+2, and so on might get through

e |dea: “Duplicate ACKs” suggest loss
— ACK says receiver is awaiting nt" packet
— Repeated ACKs suggest later packets have arrived
— Sender use “duplicate ACKs” as early hint of loss

* Fast retransmission
— Sender retransmits data after the triple duplicate ACK

Effectiveness of Fast Retransmit

* When does Fast Retransmit work best?
— Long transfers: High likelihood of many pkts in flight
— Large window: High likelihood of many packets in flight
— Low loss burstiness: Higher likelihood that later pkts arrive

* Implications for Web traffic
— Most Web objects are short (e.g., 10 packets)
— So, often aren’t many packets in flight
— ... making fast retransmit less likely to “kick in”
— ... another reason for persistent connections!

Starting and Ending a Connection:
TCP Handshakes

Establishing a TCP Connection

A B
SYN

| sNACE- -43VOV/M202"%%MO0)2MO
W:S02/0/2V".0V/NI20

/

4 Ck
Da tg

Délta

i

 Three-way handshake to establish connection
— Host A sends a ;RSchronize(fopen) to the host B
— Host B returns a SYN ACKnowledgment (;RSOTHD
— Host A sends an THUto acknowledge the SYN ACK

TCP Header

Flags: SYN
FIN
RST
PSH
URG
ACK

Source port Destination port

Sequence number

Acknowledgment

HdrLen| 0 | Flags | Advertised window

Checksum Urgent pointer

Options (variable)

Step 1: A’s Initial SYN Packet

Flags: SYN
FIN
RST
PSH
URG
ACK

T02"%%MO0X0)20Y4*2M02/0/"*0403/**"3&/

B's port A's port

A’s Initial Sequence Number

Acknowledgment

20 | 0| Flags | Advertised window

Checksum Urgent pointer

Options (variable)

*Z0

Step 2: B’s SYN-ACK Packet

Flags: SYN
FIN
RST
PSH
URG
ACK

X02"%%MO0T0)20433"2M?04*10)M0."41Q02/0V"4.0

B's port

A's port

B’s Initial Sequence Number

A's ISN plus 1

20 0 Flags

Advertised window

Checksum

Urgent pointer

Options (variable)

34

2V"0*"

Z0$'/+0."3")0)*+02V)M0'43<"2?20T034*0M24.20M"*1)*+014:

35

Step 3: A's ACK of the SYN-ACK

B’s port A's port
Flags: SYN
FIN Sequence number
RST B’s ISN plus 1
PSH _ .
URG 20 | 0| Flags | Advertised window
ACK Checksum Urgent pointer
Options (variable)

T02"%%MO0X0)20)M0/<4Q02/0M24.20M"$1)*+Z(

Z0$'/+0."3")0)*+02V)M0'43<"2?20X034*0M24.20M"*1)*+014

What if the SYN Packet Gets Lost?

e Suppose SYN packet gets lost
— Packet lost inside network, or
— Server rejects packet (e.g., listen queue is full)

* Eventually, no SYN-ACK arrives
— Sender sets timer and waits, retransmitting if needed

 How should TCP sender set timer?
— Sender has no estimate of RTT
— Some TCP stacks use default of 3 or 6 seconds
* Why reload button in your browser is useful:
Opens new connection and “retransmits” SYN in < 3-6 sec

Tearing Down the Connection

e Closing a connection

— Process done writing: invokes close()

"2%$°0 — Once TCP sends all outstanding byte,
TCP sends a FINish message
* Receiving a FINish
14240 |
G.4*Mp" o — Processreading data from socket
— Eventually, read attempt returns EOF
* Tear-down is two-way
G"'4.1/Y*0

— FIN to close, but receive remaining
— Other host ACKs the FIN

— Rest (RST) to close and not receive
remaining: error condition

CONNECT/ SYN (Step 1 of the 3-way-handshake) a8

ceeereeeseeseoc e UNUSUAl event Start
e Client{receiver path () <CLOSEI
—pe. server/sender path LISTEN/- A -
~ CLOSE/
(Step 2 of the 3-way-handshake)SYNISYN+ACK LISTEN :
A
Y Y
RST/- : : SEND/ SYN
SYN SN ENEEP S SASARRREREYRESsaaasnEnEneY uanunerresesssuaneRSEYSERSSsaRRNERNNEYRSESAss). SYN
RECEIVED P SYNISYN+ACK (simultaneous open) . . SENT
Data exchange occurs
ACKI- - SYN+ACKIACK
(Step 3 of the 3-way-handshake)
- CLOSE/FIN
: CLOSE/FIN FINVACK
: Active CLOSE Passive CLOSE :
|
: Y FINIACK - S !
: FIN WAIT 1 . CLOSING : : CLOSE WAIT :
: FIN+ACKIACK : { |
I : | I |
I
! ACK!- Vo CLOSE/FIN !
. : Vo :
: . 1 | |
| Y Vo !
: FINWAIT2 - : TIME WAIT : : LAST ACK :
| FIN/ACK : : :
| Timeout : : !
! I Y J

(Go back to start) _<

Conclusions

* Transport protocols
— Multiplexing and demultiplexing
— Checksum-based error detection
— Sequence numbers
— Retransmission
— Window-based flow control

* Next lecture
— Congestion control

