HTTP and
Web Content Delivery

COS 461: Computer Networks
Spring 2011

Mike Freedman
http://www.cs.princeton.edu/courses/archive/springl1/cos461/

Outline

_ayering
HTTP
HTTP connection management and caching

Proxying and content distribution networks

— Web proxies and hierarchical networks
— Modern distributed CDNs (Akamai)

Assignment #1 (available next week):
— Write a basic Web proxy

* (It will work with your browser and real web pages!)

HTTP Basics

* HTTP layered over bidirectional byte stream

* |nteraction

— Client sends request to server, followed by response
from server to client

— Requests/responses are encoded in text

e Stateless

— Server maintains no info about past client requests

* What about personalization? Data stored in back-end
database; client sends “web cookie” used to lookup data

HTTP needs a stream of data

Circuit Switching ———> Packet switching

(/o

Today’s networks provide packet delivery, not streams!

What if the Data Doesn’t Fit?

GET /courses/archive/spr09/cos461/ HTTP/1.1
Host: www.cs.princeton.edu

User-Agent: Mozilla/4.03 Request
CRLF

Problem: Packet size
» Typical Web page is 10 kbytes
* On Ethernet, max IP packet is 1500 bytes

hive/s | es/arc[—"| cours ["|GET /[

_ e

| | | GET index.htm|
Solution: Split the data across multiple packets

Layering = Functional Abstraction

e Sub-divide the problem
— Each layer relies on services from layer below
— Each layer exports services to layer above

* Interface between layers defines interaction
— Hides implementation details
— Layers can change without disturbing other layers

Sockets:
e streams — TCP
e datagrams - UDP

Packets C

Host-to-host connectivity

Link hardware

7

Layer Encapsulation in HTTP .

Application - Get index.html -
App-to-app _
Cc tion ID
channels | [| Connection 1]

Host-to-host
connectivity

- Source/Destination -

Link hardware

|IP Suite: End Hosts vs. Routers

host host

HTTP message

P packet

Ethernet
interface

Ethernet SONET SONET Ethernet
interface interface WS interface interface

Ethernet
interface

HTTP Request Example

GET /HTTP/1.1

Host: sns.cs.princeton.edu
Accept: */*

Accept-Language: en-us
Accept-Encoding: gzip, deflate

User-Agent: Mozilla/5.0 (Macintosh; U; Intel Mac OS X
10.5; en-US; rv:1.9.2.13) Gecko/20101203 Firefox/3.6.13

Connection: Keep-Alive

HTTP Request

If

request
line

header
lines

Entity Body

10

10

HTTP Response Example

HTTP/1.1 200 OK

Date: Wed, 02 Feb 2011 04:01:21 GMT

Server: Apache/2.2.3 (CentQS)

X-Pingback: http://sns.cs.princeton.edu/xmlrpc.php
Last-Modified: Wed, 01 Feb 2011 12:41:51 GMT
ETag: "7a11f-10ed-3a75ae4a"

Accept-Ranges: bytes

Content-Length: 4333

Keep-Alive: timeout=15, max=100

Connection: Keep-Alive

<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://
www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml" dir="Itr" lang="en-US">

How to Mark End of Message?

Close connection
— Only server can do this

Content-Length
— Must know size of transfer in advance

Implied length
— E.g., 304 (NOT MODIFIED) never have body content

Transfer-Encoding: chunked (HTTP/1.1)

— After headers, each chunk is content length in hex,
CRLF, then body. Final chunk is length 0.

Example: Chunked Encoding

HTTP/1.1 200 OK <CRLF>

Transfer-Encoding: chunked <CRLF>

<CRLF>

25 <CRLF>

This is the data in the first chunk <CRLF>
1A <CRLF>

and this is the second one <CRLF>

0 <CRLF>

e Especially useful for dynamically-generated content,
as length is not a priori known

Single Transfer Example

Server

Client sends HTTP DAT
request for HTML SAT l Server reads from

« disk
Client parses HTML T ACK

Single Transfer Example

Client opens TCP
connection

Client sends HTTP
request for HTML

Client parses HTML

0 RTT

SYN
1 RTT .. ‘

2 RTT— lw

DAT

FIN

Server
SYN
—>

T

iServer reads from

DAT disk

P
<

Single Transfer Example

Server
0 RTF SYN
Client opens TCP SYN >
connection 1 RTT-es -
. DAT]
Client sends HTTP
request for HTML DAT l Server 5?:3 s from
2 RTT— w
Client parses HTML l FIN
Client opens TCP
connection SYN
SYN
3 RTT ..
Client sends HTTP DAT
request for image l Server reads from
‘ disk
4 RTT

Image begins to arrive

<

DAT

P
<

Problems with simple model

* Multiple connection setups
— Three-way handshake each time (TCP “synchronizing” stream)

e Short transfers are hard on stream protocol (TCP)
— How much data should it send at once?

— Congestion avoidance: Takes a while to “ramp up” to high
sending rate (TCP “slow start”)

— Loss recovery is poor when not “ramped up”

* Lots of extra connections

— Increases server state/processing
— Server forced to keep connection state

Outline

_ayering
HTTP
HTTP connection management and caching

Proxying and content distribution networks

— Web proxies and hierarchical networks
— Modern distributed CDNs (Akamai)

Assignment #1 (available next week):
— Write a basic Web proxy

* (It will work with your browser and real web pages!)

Persistent Connection Example

0 RTT
Client sends HTTP
request for HTML

1 RTT ...
l

Client parses HTML

Client sends HTTP
request for image

2 RTT ..

Image begins to arrive

Server

DAT

DAT

DAT

DAT

——

l Server reads from
disk

l Server reads from
disk

Persistent HTTP

Non-persistent HTTP issues:

* Requires 2 RTTs per object

e (OS must allocate resources
for each TCP connection

* But browsers often open
parallel TCP connections to

fetch referenced objects

Persistent HTTP:

» Server leaves connection
open after sending response

* Subsequent HTTP messages
between same client/server
are sent over connection

Persistent without pipelining:

* C(Client issues new request only
when previous response has

been received
* One RTT for each object

Persistent with pipelining:

e Defaultin HTTP/1.1 spec

* Client sends requests as soon as
it encounters referenced object

* As little as one RTT for all the
referenced objects

e Server must handle responses
in same order as requests

“Persistent without pipelining” most common

* When does pipelining work best?
— Small objects, equal time to serve each object

— Small because pipelining simply removes additional 1 RTT
delay to request new content

e Alternative design?
— Multiple parallel connections (~2-4). Easier server parallelism
— No “head-of-line blocking” problem like pipelining

* Dynamic content makes HOL blocking possibility worse

* In practice, many servers don’t support, and many
browsers do not default to pipelining

HTTP Caching

Clients often cache documents
— When should origin be checked for changes?
— Every time? Every session? Date?

HTTP includes caching information in headers
— HTTP 0.9/1.0 used: “Expires: <date>"; “Pragma: no-cache”
— HTTP/1.1 has “Cache-Control”

* “No-Cache”, “Private”, “Max-age: <seconds>"
» “E-tag: <opaque value>”

If not expired, use cached copy

If expired, use condition GET request to origin

— “If-Modified-Since: <date>”, “If-None-Match: <etag>”
— 304 (“Not Modified”) or 200 (“OK”) response

HTTP Conditional Request

GET /HTTP/1.1
Host: sns.cs.princeton.edu

User-Agent: Mozilla/5.0 (Macintosh; U; Intel Mac
OS X 10.5; en-US; rv:1.9.2.13)

Connection: Keep-Alive

If-Modified-Since: Tue, 1 Feb 2011 17:54:18 GMT

If-None-Match: "7a11f-10ed-3a75ae4a"

HTTP/1.1 304 Not Modified

Date: Wed, 02 Feb 2011 04:01:21 GMT
Server: Apache/2.2.3 (CentOS)

ETag: "7a11f-10ed-3a75ae4a"
Accept-Ranges: bytes

Keep-Alive: timeout=15, max=100
Connection: Keep-Alive

Web Proxy Caches

User configures browser: origin
. server
Web accesses via cache

Browser sends all HTTP
requests to cache

L o
— Object in cache: cache o2) Qo(\e,e
. S
returns object A0

— Else: cache requests

. . . client .
object from origin, origin

then returns to client server

When a single cache isn’t enough

 What if the working set is > proxy disk?

— Cooperation!

e A static hierarchy
— Check local
— If miss, check siblings
— If miss, fetch through parent

* Internet Cache Protocol (ICP)

— ICPv2 in RFC 2186 (& 2187)
— UDP-based, short timeout

public
Internet

Parent
@ web cache

Web traffic has cacheable workload

100000 — S AR —— —
Characteristics of WWW Client-based Traces
Carlos R. Cunha, Azer Bestavros, Mark E. Crovella, BU-CS-95-01 |
L &
(S
&
10000 | o
i e
1=
o -
E
a 1000 f
(=]
]
2
(%]
@
s 100 |
@
&)
Q
<
10
1 1 1 ' | ! 1 M| 1 1 | 1 o | | !
1 10 100 1000 10000 100000

Document Rank

“Zipt” or “power-law” distribution

Content Distribution Networks (CDNs)

Content providers are CDN
customers

Content replication

CDN company installs thousands
of servers throughout Internet

— In large datacenters
— Or, close to users
CDN replicates customers’ content

When provider updates content,
CDN updates servers

origin server
in North America

i
CDN distri£ution node
|
@/ I\
L9 9 0

] . CDN server
in S. America CDN server]]
in Asia
in Europe

Content Distribution Networks &
Server Selection

* Replicate content on many servers

* Challenges
— How to replicate content
— Where to replicate content
— How to find replicated content
— How to choose among know replicas
— How to direct clients towards replica

Server Selection

e Which server?
— Lowest load: to balance load on servers

— Best performance: to improve client performance
* Based on Geography? RTT? Throughput? Load?

— Any alive node: to provide fault tolerance
* How to direct clients to a particular server?
— As part of routing: anycast, cluster load balancing
— As part of application: HTTP redirect
— As part of naming: DNS

How Akamai Works

cnn.com (content provider) pNS root server

Akamai global
DNS server

Akamai
cluster

- Akamai regional
@ DNS server

End-user

Nearby
Akamai

cluster

How Akamai Works

cnn.com (content provider)

End-user

DNS lookup
cache.cnn.com

DNS root server

Akamai global
DNS server

Akamai
cluster

- Akamai regional
@ DNS server

R
T h

Nearby
Akamai

cluster

31

How Akamai Works

cnn.com (content provider) pNS root server

DNS lookup
| g.akamai.net

Akamai
cluster

Akamai global
DNS server

- Akamai regional
@ DNS server

s“:_' lli

Nearby
Akamai

cluster

End-user

How Akamai Works

cnn.com (content provider) pNS root server

Akamai
cluster

Akamai global
DNS server

- Akamai regional
DNS server

" g
y B
ll
. E
— o = T I
R
R NS T e .]

End-user

Nearby
Akamai

cluster

R
w L

How Akamai Works

cnn.com (content provider) pNS root server

Akamai global
DNS server

1 bnps
Y B
I
: - £
- o~ 2
P
AR A\ . .

End-user

< ooo-

Host: cache.cnn.com

w L

)

Akamai
cluster

- Akamai regional
DNS server

Nearby
Akamai

cluster

34

How Akamai Works

cnn.com (content provider) pNS root server

GET foo.jpg

Akamai
cluster

Akamai global
DNS server

- Akamai regional
DNS server

|
[i
|
i
= e v
.‘:—‘_ .
et .
L R Vo s

Ny oA «

Nearb
lcﬁlﬁ Akama

cluster

End-user ¢ 50.jp¢

Host: cache.cnn.com

all
n
» NN

How Akamai Works

cnn.com (content provider) pNS root server

Akamai
cluster

Akamai global
DNS server

- Akamai regional
DNS server

|
i
|
i
| —_
el
e I
- QESENNA P

Nearb
lcﬁlﬁ Akama

cluster

—

End-user

al
n
» NN

Summary

e HTTP: Simple text-based file exchange protocol

— Support for status/error responses, authentication, client-
side state maintenance, cache maintenance

 |nteractions with TCP

— Connection setup, reliability, state maintenance
— Persistent connections

* How to improve performance
— Persistent and pipelined connections
— Caching
— Replication: Web proxies, cooperative proxies, and CDNs

