

HTTP and Web Content Delivery

COS 461: Computer Networks
Spring 2011

Mike Freedman http://www.cs.princeton.edu/courses/archive/spring11/cos461/

Outline

- Layering
- HTTP
- HTTP connection management and caching
- Proxying and content distribution networks
 - Web proxies and hierarchical networks
 - Modern distributed CDNs (Akamai)
- Assignment #1 (available next week):
 - Write a basic Web proxy
 - (It will work with your browser and real web pages!)

HTTP Basics

HTTP layered over bidirectional byte stream

Interaction

- Client sends request to server, followed by response from server to client
- Requests/responses are encoded in text

Stateless

- Server maintains no info about past client requests
 - What about personalization? Data stored in back-end database; client sends "web cookie" used to lookup data

HTTP needs a stream of data

Circuit Switching Packet switching Device

Today's networks provide packet delivery, not streams!

What if the Data Doesn't Fit?

GET /courses/archive/spr09/cos461/ HTTP/1.1

Host: www.cs.princeton.edu

User-Agent: Mozilla/4.03

CRLF

Problem: Packet size

- Typical Web page is 10 kbytes
- On Ethernet, max IP packet is 1500 bytes

GET index.html

Solution: Split the data across multiple packets

Layering = Functional Abstraction

- Sub-divide the problem
 - Each layer relies on services from layer below
 - Each layer exports services to layer above
- Interface between layers defines interaction
 - Hides implementation details
 - Layers can change without disturbing other layers

Layer Encapsulation in HTTP

IP Suite: End Hosts vs. Routers

HTTP Request Example

GET / HTTP/1.1

Host: sns.cs.princeton.edu

Accept: */*

Accept-Language: en-us

Accept-Encoding: gzip, deflate

User-Agent: Mozilla/5.0 (Macintosh; U; Intel Mac OS X

10.5; en-US; rv:1.9.2.13) Gecko/20101203 Firefox/3.6.13

Connection: Keep-Alive

HTTP Request

HTTP Response Example

HTTP/1.1 200 OK

Date: Wed, 02 Feb 2011 04:01:21 GMT

Server: Apache/2.2.3 (CentOS)

X-Pingback: http://sns.cs.princeton.edu/xmlrpc.php

Last-Modified: Wed, 01 Feb 2011 12:41:51 GMT

ETag: "7a11f-10ed-3a75ae4a"

Accept-Ranges: bytes

Content-Length: 4333

Keep-Alive: timeout=15, max=100

Connection: Keep-Alive

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" dir="ltr" lang="en-US">

How to Mark End of Message?

- Close connection
 - Only server can do this
- Content-Length
 - Must know size of transfer in advance
- Implied length
 - E.g., 304 (NOT MODIFIED) never have body content
- Transfer-Encoding: chunked (HTTP/1.1)
 - After headers, each chunk is content length in hex,
 CRLF, then body. Final chunk is length 0.

Example: Chunked Encoding

```
HTTP/1.1 200 OK <CRLF>
Transfer-Encoding: chunked <CRLF>
<CRLF>
25 <CRLF>
This is the data in the first chunk <CRLF>
1A <CRLF>
and this is the second one <CRLF>
0 <CRLF>
```

 Especially useful for dynamically-generated content, as length is not a priori known

Single Transfer Example

Single Transfer Example

Single Transfer Example

Problems with simple model

- Multiple connection setups
 - Three-way handshake each time (TCP "synchronizing" stream)
- Short transfers are hard on stream protocol (TCP)
 - How much data should it send at once?
 - Congestion avoidance: Takes a while to "ramp up" to high sending rate (TCP "slow start")
 - Loss recovery is poor when not "ramped up"
- Lots of extra connections
 - Increases server state/processing
 - Server forced to keep connection state

Outline

- Layering
- HTTP
- HTTP connection management and caching
- Proxying and content distribution networks
 - Web proxies and hierarchical networks
 - Modern distributed CDNs (Akamai)
- Assignment #1 (available next week):
 - Write a basic Web proxy
 - (It will work with your browser and real web pages!)

Persistent Connection Example

Persistent HTTP

Non-persistent HTTP issues:

- Requires 2 RTTs per object
- OS must allocate resources for each TCP connection
- But browsers often open parallel TCP connections to fetch referenced objects

Persistent HTTP:

- Server leaves connection open after sending response
- Subsequent HTTP messages between same client/server are sent over connection

Persistent without pipelining:

- Client issues new request only when previous response has been received
- One RTT for each object

Persistent with pipelining:

- Default in HTTP/1.1 spec
- Client sends requests as soon as it encounters referenced object
- As little as one RTT for all the referenced objects
- Server must handle responses in same order as requests

"Persistent without pipelining" most common

- When does pipelining work best?
 - Small objects, equal time to serve each object
 - Small because pipelining simply removes additional 1 RTT delay to request new content
- Alternative design?
 - Multiple parallel connections (~2-4). Easier server parallelism
 - No "head-of-line blocking" problem like pipelining
 - Dynamic content makes HOL blocking possibility worse
- In practice, many servers don't support, and many browsers do not default to pipelining

HTTP Caching

- Clients often cache documents
 - When should origin be checked for changes?
 - Every time? Every session? Date?
- HTTP includes caching information in headers
 - HTTP 0.9/1.0 used: "Expires: <date>"; "Pragma: no-cache"
 - HTTP/1.1 has "Cache-Control"
 - "No-Cache", "Private", "Max-age: <seconds>"
 - "E-tag: <opaque value>"
- If not expired, use cached copy
- If expired, use condition GET request to origin
 - "If-Modified-Since: <date>", "If-None-Match: <etag>"
 - 304 ("Not Modified") or 200 ("OK") response

HTTP Conditional Request

GET / HTTP/1.1

Host: sns.cs.princeton.edu

User-Agent: Mozilla/5.0 (Macintosh; U; Intel Mac

OS X 10.5; en-US; rv:1.9.2.13)

Connection: Keep-Alive

If-Modified-Since: Tue, 1 Feb 2011 17:54:18 GMT

If-None-Match: "7a11f-10ed-3a75ae4a"

HTTP/1.1 304 Not Modified

Date: Wed, 02 Feb 2011 04:01:21 GMT

Server: Apache/2.2.3 (CentOS)

ETag: "7a11f-10ed-3a75ae4a"

Accept-Ranges: bytes

Keep-Alive: timeout=15, max=100

Connection: Keep-Alive

Web Proxy Caches

- User configures browser:
 Web accesses via cache
- Browser sends all HTTP requests to cache
 - Object in cache: cache returns object
 - Else: cache requests object from origin, then returns to client

When a single cache isn't enough

- What if the working set is > proxy disk?
 - Cooperation!
- A static hierarchy
 - Check local
 - If miss, check siblings
 - If miss, fetch through parent
- Internet Cache Protocol (ICP)
 - ICPv2 in RFC 2186 (& 2187)
 - UDP-based, short timeout

Web traffic has cacheable workload

"Zipf" or "power-law" distribution

Content Distribution Networks (CDNs)

Content providers are CDN customers

Content replication

- CDN company installs thousands of servers throughout Internet
 - In large datacenters
 - Or, close to users
- CDN replicates customers' content
- When provider updates content,
 CDN updates servers

Content Distribution Networks & Server Selection

- Replicate content on many servers
- Challenges
 - How to replicate content
 - Where to replicate content
 - How to find replicated content
 - How to choose among know replicas
 - How to direct clients towards replica

Server Selection

- Which server?
 - Lowest load: to balance load on servers
 - Best performance: to improve client performance
 - Based on Geography? RTT? Throughput? Load?
 - Any alive node: to provide fault tolerance
- How to direct clients to a particular server?
 - As part of routing: anycast, cluster load balancing
 - As part of application: HTTP redirect
 - As part of naming: DNS

Summary

- HTTP: Simple text-based file exchange protocol
 - Support for status/error responses, authentication, clientside state maintenance, cache maintenance
- Interactions with TCP
 - Connection setup, reliability, state maintenance
 - Persistent connections
- How to improve performance
 - Persistent and pipelined connections
 - Caching
 - Replication: Web proxies, cooperative proxies, and CDNs