Combinatorial Search - permutations - backtracking - counting - **subsets** - paths in a graph #### Overview Exhaustive search. Iterate through all elements of a search space. Applicability. Huge range of problems (include intractable ones). Caveat. Search space is typically exponential in size \Rightarrow effectiveness may be limited to relatively small instances. Backtracking. Systematic method for examining feasible solutions to a problem, by systematically pruning infeasible ones. #### Warmup: enumerate N-bit strings Goal. Process all 2^N bit strings of length N. - Maintain array a[] where a[i] represents bit i. - Simple recursive method does the job. [Invariant: enumerates all possibilities in a [k..N-1], beginning and ending with all Os] ``` // enumerate bits in a[k] to a[N-1] private void enumerate(int k) { if (k == N) { process(); return; } enumerate(k+1); a[k] = 1; enumerate(k+1); a[k] = 0; } ``` ``` enumerate(0) 0 0 enumerate(1) 0 0 0 0 enumerate(2) a[1] = 1; 0 1 enumerate(2) a[1] = 0; 0 0 a[0] = 1; enumerate(1) 1 0 enumerate(2) | 1 0 a[1] = 1; enumerate(2) | 1 1 a[1] = 0; a[0] = 0; 0 0 ``` Remark. Equivalent to counting in binary from 0 to 2^N - 1. ## Warmup: enumerate N-bit strings Goal. Process all 2^N bit strings of length N. Maintain array a[] where a[i] represents bit i. ``` • Simple recursive method does the job. N = 3 N = 4 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0 0 1 1 0 1 0 1 0 0 1 1 // enumerate bits in a[k] to a[N-1] 1 0 1 private void enumerate(int k) 1 1 0 0 1 1 1 1 0 0 0 0 0 if (k == N) 1 0 1 0 0 1 1 0 0 { process(); return; } 0 1 0 1 1 0 enumerate(k+1); 0 1 1 a[k] = 1; 1 0 0 1 1 0 enumerate(k+1); 1 0 1 1 0 0 clean up a[k] = 0; \leftarrow 1 1 1 0 0 0 0 1 1 1 1 ``` Remark. Equivalent to counting in binary from 0 to 2^N - 1. a[0] a[N-1] #### Warmup: enumerate N-bit strings ``` public class BinaryCounter private int N; // number of bits private int[] a; // a[i] = ith bit public BinaryCounter(int N) this.N = N; this.a = new int[N]; enumerate(0); private void process() for (int i = 0; i < N; i++) StdOut.print(a[i]) + " "; StdOut.println(); private void enumerate(int k) if (k == N) { process(); return; } enumerate(k+1); a[k] = 1; enumerate(k+1); a[k] = 0; ``` ``` public static void main(String[] args) int N = Integer.parseInt(args[0]); new BinaryCounter(N); } ``` ``` 0 1 1 0 0 1 1 1 1 0 0 0 1 0 0 1 1 0 1 0 1 0 1 1 ``` all programs in this lecture are variations on this theme ``` % java BinaryCounter 4 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0 0 1 0 1 1 1 0 0 1 1 0 1 1 1 1 0 1 1 1 1 ``` # **→** permutations - backtracking - counting - subsets - paths in a graph #### N-rooks problem Q. How many ways are there to place N rooks on an N-by-N board so that no rook can attack any other? int[] a = { 2, 0, 1, 3, 6, 7, 4, 5 }; Representation. No two rooks in the same row or column \Rightarrow permutation. Challenge. Enumerate all N! permutations of 0 to N-1. ## Enumerating permutations ## Recursive algorithm to enumerate all N! permutations of N elements. - Start with permutation a[0] to a[N-1]. - For each value of i: - Swap a[i] into position 0 - enumerate all (N-1)! permutations of a[1] to a[N-1] - clean up (swap a[i] back to original position) #### Enumerating permutations ## Recursive algorithm to enumerate all N! permutations of N elements. - Start with permutation a[0] to a[N-1]. - For each value of i: - Swap a[i] into position 0 - enumerate all (N-1)! permutations of a[1] to a[N-1] - clean up (swap a[i] back to original position) ``` % java Rooks 4 1 2 3 1 3 2 2 1 3 o followed by perms of 1 2 3 3 2 1 3 1 2 0 3 2 1 followed by perms of 0 2 3 2 3 0 3 0 2 1 3 0 2 followed by 0 1 3 perms of 1 0 3 3 0 1 з followed by 2 1 0 perms of 1 2 0 2 0 1 0 2 1 0 1 2 a[N-1] ``` ## Enumerating permutations ``` public class Rooks private int N; private int[] a; // bits (0 or 1) public Rooks(int N) this.N = N; a = new int[N]; for (int i = 0; i < N; i++) a[i] = i; initial permutation enumerate(0); private void enumerate(int k) { /* see previous slide */ } private void exch(int i, int j) { int t = a[i]; a[i] = a[j]; a[j] = t; } public static void main(String[] args) int N = Integer.parseInt(args[0]); new Rooks(N); ``` ``` % java Rooks 2 0 1 1 0 % java Rooks 3 0 1 2 0 2 1 1 0 2 1 2 0 2 1 0 2 0 1 ``` #### 4-rooks search tree ## N-rooks problem: back-of-envelope running time estimate Slow way to compute N!. Hypothesis. Running time is about 2(N! / 8!) seconds. ## ▶ permutations - ▶ backtracking - → counting - subsets - paths in a graph #### N-queens problem Q. How many ways are there to place N queens on an N-by-N board so that no queen can attack any other? Representation. No two queens in the same row or column \Rightarrow permutation. Additional constraint. No diagonal attack is possible. Challenge. Enumerate (or even count) the solutions. ← unlike N-rooks problem, nobody knows answer for N > 30 ## 4-queens search tree ## 4-queens search tree (pruned) ## N-queens problem: backtracking solution Backtracking paradigm. Iterate through elements of search space. - When there are several possible choices, make one choice and recur. - If the choice is a dead end, backtrack to previous choice, and make next available choice. Benefit. Identifying dead ends allows us to prune the search tree. ## Ex. [backtracking for N-queens problem] - Dead end: a diagonal conflict. - Pruning: backtrack and try next column when diagonal conflict found. ## N-queens problem: backtracking solution ``` private boolean backtrack(int k) for (int i = 0; i < k; i++) if ((a[i] - a[k]) == (k - i)) return true; if ((a[k] - a[i]) == (k - i)) return true; return false; // place N-k queens in a[k] to a[N-1] private void enumerate(int k) stop enumerating if adding queen k leads if (k == N) to a diagonal violation { process(); return; } for (int i = k; i < N; i++) exch(k, i); if (!backtrack(k)) enumerate(k+1); exch(i, k); ``` ``` % java Queens 4 1 3 0 2 2 0 3 1 % java Queens 5 0 2 4 1 3 0 3 1 4 2 1 3 0 2 4 1 4 2 0 3 2 0 3 1 4 2 4 1 3 0 3 1 4 2 0 3 0 2 4 1 4 1 3 0 2 4 2 0 3 1 % java Queens 6 1 3 5 0 2 4 2 5 1 4 0 3 3 0 4 1 5 2 4 2 0 5 3 1 ``` a[N-1] a[0] ## N-queens problem: effectiveness of backtracking Pruning the search tree leads to enormous time savings. | N | Q(N) | N! | |----|---------|----------------| | 2 | 0 | 2 | | 3 | 0 | 6 | | 4 | 2 | 24 | | 5 | 10 | 120 | | 6 | 4 | 720 | | 7 | 40 | 5,040 | | 8 | 92 | 40,320 | | 9 | 352 | 362,880 | | 10 | 724 | 3,628,800 | | 11 | 2,680 | 39,916,800 | | 12 | 14,200 | 479,001,600 | | 13 | 73,712 | 6,227,020,800 | | 14 | 365,596 | 87,178,291,200 | ## N-queens problem: How many solutions? Hypothesis. Running time is about $(N! / 2.5^N) / 43,000$ seconds. Conjecture. $Q(N) \sim N! / c^N$, where c is about 2.54. - permutations - ▶ backtracking - ▶ counting - subsets - paths in a graph ## Counting: Java implementation Goal. Enumerate all N-digit base-R numbers. Solution. Generalize binary counter in lecture warmup. ``` // enumerate base-R numbers in a[k] to a[N-1] private static void enumerate(int k) { if (k == N) { process(); return; } for (int r = 0; r < R; r++) { a[k] = r; enumerate(k+1); } a[k] = 0; } cleanup not needed; why?</pre> ``` ``` % java Counter 2 4 0 0 0 1 0 3 1 0 1 1 1 2 1 3 2 0 2 1 2 2 2 3 3 0 3 1 3 2 3 3 % java Counter 3 2 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1 a[0] a[N-1] ``` ## Counting application: Sudoku Goal. Fill 9-by-9 grid so that every row, column, and box contains each of the digits 1 through 9. Remark. Natural generalization is NP-complete. ## Counting application: Sudoku Goal. Fill 9-by-9 grid so that every row, column, and box contains each of the digits 1 through 9. Solution. Enumerate all 81-digit base-9 numbers (with backtracking). ## Sudoku: backtracking solution ## Iterate through elements of search space. - For each empty cell, there are 9 possible choices. - Make one choice and recur. - If you find a conflict in row, column, or box, then backtrack. #### Sudoku: Java implementation ``` private void enumerate(int k) if (k == 81) found a solution { process(); return; } cell k initially filled in; if (a[k] != 0) recur on next cell enumerate(k+1); return; } try 9 possible digits for (int r = 1; r \le 9; r++) for cell k a[k] = r; unless it violates a if (!backtrack(k)) Sudoku constraint enumerate(k+1); (see booksite for code) clean up a[k] = 0; ``` ``` % more board.txt 7 0 8 0 0 0 3 0 0 0 0 0 2 0 1 0 0 0 5 0 0 0 0 0 0 0 0 4 0 0 0 0 0 2 6 3 0 0 0 8 0 0 0 0 0 0 0 1 0 0 0 9 0 0 9 0 6 0 0 0 0 4 0 0 0 0 7 0 5 0 0 0 0 0 0 0 0 0 0 % java Sudoku < board.txt 7 2 8 9 4 6 3 1 5 9 3 4 2 5 1 6 7 8 5 1 6 7 3 8 2 4 9 1 4 7 5 9 3 8 2 6 3 6 9 4 8 2 1 5 7 8 5 2 1 6 7 4 9 3 2 9 3 6 1 5 7 8 4 4 8 1 3 7 9 5 6 2 6 7 5 8 2 4 9 3 1 ``` - ▶ permutations - backtracking - ➤ counting - subsets - paths in a graph ## Enumerating subsets: natural binary encoding Given N elements, enumerate all 2^N subsets. - Count in binary from 0 to 2^N 1. - Bit i represents element i. - If 1, in subset; if 0, not in subset. | i | binary | subset | complement | |----|---------|---------|------------| | | | | | | 0 | 0 0 0 0 | empty | 4 3 2 1 | | 1 | 0 0 0 1 | 1 | 4 3 2 | | 2 | 0 0 1 0 | 2 | 4 3 1 | | 3 | 0 0 1 1 | 2 1 | 4 3 | | 4 | 0 1 0 0 | 3 | 4 2 1 | | 5 | 0 1 0 1 | 3 1 | 4 2 | | 6 | 0 1 1 0 | 3 2 | 4 1 | | 7 | 0 1 1 1 | 3 2 1 | 4 | | 8 | 1 0 0 0 | 4 | 3 2 1 | | 9 | 1 0 0 1 | 4 1 | 3 2 | | 10 | 1 0 1 0 | 4 2 | 3 1 | | 11 | 1 0 1 1 | 4 2 1 | 3 | | 12 | 1 1 0 0 | 4 3 | 2 1 | | 13 | 1 1 0 1 | 4 3 1 | 2 | | 14 | 1 1 1 0 | 4 3 2 | 1 | | 15 | 1 1 1 1 | 4 3 2 1 | empty | ## Enumerating subsets: natural binary encoding Given N elements, enumerate all 2^N subsets. - Count in binary from 0 to 2^N 1. - Maintain array a[] where a[i] represents element i. - If 1, a[i] in subset; if 0, a[i] not in subset. ## Binary counter from warmup does the job. ``` private void enumerate(int k) { if (k == N) { process(); return; } enumerate(k+1); a[k] = 1; enumerate(k+1); a[n] = 0; } ``` ## Digression: Samuel Beckett play Quad. Starting with empty stage, 4 characters enter and exit one at a time, such that each subset of actors appears exactly once. | code | | | subset | move | | |------|---|---|--------|---------|----------| | 0 | 0 | 0 | 0 | empty | | | 0 | 0 | 0 | 1 | 1 | enter 1 | | 0 | 0 | 1 | 1 | 2 1 | enter 2 | | 0 | 0 | 1 | 0 | 2 | exit 1 | | 0 | 1 | 1 | 0 | 3 2 | enter 3 | | 0 | 1 | 1 | 1 | 3 2 1 | enter 1 | | 0 | 1 | 0 | 1 | 3 1 | exit 2 | | 0 | 1 | 0 | 0 | 3 | exit 1 | | 1 | 1 | 0 | 0 | 4 3 | enter 4 | | 1 | 1 | 0 | 1 | 4 3 1 | enter 1 | | 1 | 1 | 1 | 1 | 4 3 2 1 | enter 2 | | 1 | 1 | 1 | 0 | 4 3 2 | exit 1 | | 1 | 0 | 1 | 0 | 4 2 | exit 3 | | 1 | 0 | 1 | 1 | 4 2 1 | enter 1 | | 1 | 0 | 0 | 1 | 4 1 | exit 2 | | 1 | 0 | 0 | 0 | 4 | exit 1 | | | | | | | ^ | ruler function ## Digression: Samuel Beckett play Quad. Starting with empty stage, 4 characters enter and exit one at a time, such that each subset of actors appears exactly once. "faceless, emotionless one of the far future, a world where people are born, go through prescribed movements, fear non-being even though their lives are meaningless, and then they disappear or die." — Sidney Homan ## Binary reflected gray code ## Def. The k-bit binary reflected Gray code is: - The (k-1) bit code with a 0 prepended to each word, followed by - The (k-1) bit code in reverse order, with a 1 prepended to each word. #### Enumerating subsets using Gray code ## Two simple changes to binary counter from warmup: - Flip a[k] instead of setting it to 1. - Eliminate cleanup. #### **Gray code binary counter** #### standard binary counter (from warmup) ``` // all bit strings in a[k] to a[N-1] // all bit strings in a[k] to a[N-1] private void enumerate(int k) private void enumerate(int k) if (k == N) if (k == N) { process(); return; } { process(); return; } enumerate(k+1); enumerate(k+1); a[k] = 1 - a[k]; a[k] = 1; 0 0 0 0 0 0 enumerate(k+1); enumerate(k+1); 0 0 1 0 0 1 a[k] = 0; 0 1 1 0 1 0 0 1 0 0 1 1 1 1 0 1 0 0 same values 1 1 1 1 0 1 since no cleanup 0 1 1 1 0 1 0 0 1 1 1 a[N-1] a[0] ``` Advantage. Only one item in subset changes at a time. ## More applications of Gray codes 3-bit rotary encoder 8-bit rotary encoder **Towers of Hanoi** Chinese ring puzzle ## Scheduling Scheduling (set partitioning). Given N jobs of varying length, divide among two machines to minimize the makespan (time the last job finishes). Remark. This scheduling problem is NP-complete. ## Scheduling (full implementation) ``` public class Scheduler private int N; // Number of jobs. // Subset assignments. private int[] a; private int[] b; // Best assignment. private double[] jobs; // Job lengths. public Scheduler(double[] jobs) this.N = jobs.length; this.jobs = jobs; a = new int[N]; b = new int[N]; enumerate(N); public int[] best() { return b; } private void enumerate(int k) { /* Gray code enumeration. */ } private void process() if (cost(a) < cost(b)) for (int i = 0; i < N; i++) b[i] = a[i]; public static void main(String[] args) { /* create Scheduler, print results */ } ``` ``` % java Scheduler 4 < jobs.txt</pre> finish times a[] cost 0 0 0 7.38 0.00 7.38 5.15 2.24 2.91 0 0 1 3.15 0 1 1 4.24 1.09 5.38 2.00 3.65 3.73 0.08 1 1 0 1.41 5.97 3.41 3.97 5.65 1.73 4.24 3.15 5.38 2.00 0.00 7.38 5.15 2.24 3.97 3.41 0 1 1 1.73 5.65 3.73 3.65 0 0 0 5.97 1.41 MACHINE 0 MACHINE 1 1.4142135624 1.7320508076 2.000000000 2.2360679775 3.6502815399 3.7320508076 ``` trace of #### Scheduling: improvements ## Many opportunities (details omitted). - Fix last job to be on machine O (quick factor-of-two improvement). - Maintain difference in finish times (instead of recomputing from scratch). - Backtrack when partial schedule cannot beat best known. (check total against goal: half of total job times) ``` private void enumerate(int k) { if (k == N-1) { process(); return; } if (backtrack(k)) return; enumerate(k+1); a[k] = 1 - a[k]; enumerate(k+1); } ``` • Process all 2^k subsets of last k jobs, keep results in memory, (reduces time to 2^{N-k} when 2^k memory available). - ▶ permutations - backtracking - counting - subsets - > paths in a graph # Enumerating all paths on a grid Goal. Enumerate all simple paths on a grid of adjacent sites. no two atoms can occupy same position at same time Application. Self-avoiding lattice walk to model polymer chains. ## Enumerating all paths on a grid: Boggle Boggle. Find all words that can be formed by tracing a simple path of adjacent cubes (left, right, up, down, diagonal). Pruning. Stop as soon as no word in dictionary contains string of letters on current path as a prefix \Rightarrow use a trie. BA BAX #### Boggle: Java implementation ``` string of letters on current path to (i, j) private void dfs(String prefix, int i, int j) if ((i < 0 || i >= N) || (j < 0 | | j >= N) | | (visited[i][j]) || backtrack !dictionary.containsAsPrefix(prefix)) return; visited[i][j] = true; add current character prefix = prefix + board[i][j]; if (dictionary.contains(prefix)) add to set of found words found.add(prefix); for (int ii = -1; ii <= 1; ii++) for (int jj = -1; jj \le 1; jj++) try all possibilities dfs(prefix, i + ii, j + jj); clean up visited[i][j] = false; ``` # Hamilton path Goal. Find a simple path that visits every vertex exactly once. visit every edge exactly once Remark. Euler path easy, but Hamilton path is NP-complete. # Knight's tour Goal. Find a sequence of moves for a knight so that (starting from any desired square) it visits every square on a chessboard exactly once. legal knight moves a knight's tour Solution. Find a Hamilton path in knight's graph. ### Hamilton path: backtracking solution ## Backtracking solution. To find Hamilton path starting at v: - Add v to current path. - For each vertex w adjacent to v - find a simple path starting at \boldsymbol{w} using all remaining vertices - Clean up: remove v from current path. - Q. How to implement? - A. Add cleanup to DFS (!!) #### Hamilton path: Java implementation ``` public class HamiltonPath private boolean[] marked; // vertices on current path public HamiltonPath(Graph G) marked = new boolean[G.V()]; for (int v = 0; v < G.V(); v++) dfs(G, v, 1); private void dfs(Graph G, int v, int depth) length of current path marked[v] = true; (depth of recursion) found one - if (depth == G.V()) count++; for (int w : G.adj(v)) backtrack if w is if (!marked[w]) dfs(G, w, depth+1); already part of path ``` # Exhaustive search: summary | problem | enumeration | backtracking | |---------------|------------------|--------------| | N-rooks | permutations | no | | N-queens | permutations | yes | | Sudoku | base-9 numbers | yes | | scheduling | subsets | yes | | Boggle | paths in a grid | yes | | Hamilton path | paths in a graph | yes | #### The longest path Woh-oh-oh, find the longest path! Woh-oh-oh, find the longest path! If you said P is NP tonight, There would still be papers left to write, I have a weakness, I'm addicted to completeness, And I keep searching for the longest path. The algorithm I would like to see Is of polynomial degree, But it's elusive: Nobody has found conclusive Evidence that we can find a longest path. I have been hard working for so long. I swear it's right, and he marks it wrong. Some how I'll feel sorry when it's done: GPA 2.1 Is more than I hope for. Garey, Johnson, Karp and other men (and women) Tried to make it order N log N. Am I a mad fool If I spend my life in grad school, Forever following the longest path? Woh-oh-oh-oh, find the longest path! Woh-oh-oh-oh, find the longest path! Woh-oh-oh-oh, find the longest path. Recorded by Dan Barrett in 1988 while a student at Johns Hopkins during a difficult algorithms final # That's all, folks: keep searching! The world's longest path (Sendero de Chile): 9,700 km. (originally scheduled for completion in 2010; now delayed until 2038)