Combinatorial Search

» permutations
» backtracking
» counting

AlgOritth » subsets

FOURTH EDITION

» paths in a graph

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms, 4" Edition : Robert Sedgewick and Kevin Wayne : Copyright © 2002-2010 - April 26,2011 8:31:18 PM

Overview

Exhaustive search. Iterate through all elements of a search space.

Applicability. Huge range of problems (include intractable ones).

Caveat. Search space is typically exponential in size =
effectiveness may be limited to relatively small instances.

Backtracking. Systematic method for examining feasible solutions
to a problem, by systematically pruning infeasible ones.

Warmup: enumerate N-bit strings

Goal. Process all 2¥ bit strings of length M.
* Maintain array a[] where a[i] represents bit i.
» Simple recursive method does the job.

[Invariant: enumerates all possibilities in a[k..N-1], beginning and ending with all Os]

enumerate (0)

_ . enumerate (1)

// enumerate bits in a[k] to a[N-1]

. : : enumerate(2) | 0 O

private void enumerate (int k)

(a[l] = 1; 1
) enumerate(2) | 0 1
if (k == N)

a[l] = 0; 0
{ process(); return; }
a[0] = 1; 1
enumerate (k+1) ;
enumerate (1)
alk] = 1;
enumerate(2) | 1 0
enumerate (k+1) ;
a[l] = 1; 1
alk] = 0;
} enumerate(2) | 1 1
a[l] = 0; 0
a[0] = O; 0

Remark. Equivalent to counting in binary from 0 to 2V - 1.

Warmup: enumerate N-bit strings

Goal. Process all 2¥ bit strings of length M.
* Maintain array a[] where a[i] represents bit i.
» Simple recursive method does the job.

// enumerate bits in al[k] to a[N-1]
private void enumerate (int k)
{
if (k == N)
{ process(); return; }
enumerate (k+1) ;

alk] = 1;
enumerate (k+1) ;
alk] = 0; < clean up

o O o O
= o O
O r O O BRr o

Remark. Equivalent to counting in binary from 0 to 2V- 1.

o

=

4

I
SN

>R R PR PR RrRHFRHRRMHOOOOOOODOoO

)P R, OOOIOKFFRFRRKFERKHEHOOODO
)R Rr,rOOHWRKRHKK OOIF PR OORHRKER OO
P OPRPROPRFRPROHROIFPOPRFRPROPR OHRO

»
>

[\]

-
o
—

a[N-1]

Warmup: enumerate N-bit strings

public BinaryCounter (int N)
{

this.N = N;
this.a = new int[N];

java BinaryCounter 4
enumerate (0) ;

0

private void process()
{
for (int i = 0; i < N; i++4)
StdOut.print(a[i]) + " ";
StdOut.println() ;

private void enumerate (int k)
{

if (k == N)

{ process(); return; }

enumerate (k+1) ;

alk] = 1;

enumerate (k+1) ;

a[k] = 0;

all programs in this
lecture are variations
on this theme

P PFRrR R HRKHEHHEHHOOOOOOOGO ®
HF PP HEHOOOOHREREREKEREROOOO

HHOORRFROOKHKHOORLERERO
HOHOHFROKFROKOKOHKOHRO

» permutations

N-rooks problem

Q. How many ways are there to place N rooks on an N-by-N board so that

no rook can attack any other?

I El IR E] K ElE
o

1 E

nz a[4] = 6 means the rook
= % from row 4 is in column 6

] il
[5] =
o

¥

int[] a={2, 0, 1, 3, 6, 7, 4, 5 };

Representation. No two rooks in the same row or column = permutation.

Challenge. Enumerate all N! permutations of 0 to N - 1.

Enumerating permutations

Recursive algorithm to enumerate all N! permutations of N elements.
e Start with permutation a[0] to a[N-1].
e For each value of i:

- swap a[i] into position 0

- enumerate all (N—1)! permutations of a[1] t0o a[N-1]

- clean up (swap a[i] back to original position)

N=3 0 followed by 1 followed by 2 followed by 3 followed by
1 2 permsofl1 2 3 permsof0 2 3 permsofl 0 3 permsofl 2 0
et 0|2 1 | |) |
0 0|1 2 3 1|10 2 3 2|1 3 3|11 20
1,0 2 0|1 3 2 10 3 2 21 30 3/11 0 2
1/2 0 0213 1/2 0 3 2|01 3 31210
0|2 31 112 30 2|0 31 3|12 01
0|3 21 11320 2301 3/021
210 0|31 2 1302 2310 3/012
2101
< cleanup swaps that bring T T

o
—

permutation back to original al a[N-1]

Enumerating permutations

Recursive algorithm to enumerate all N! permutations of N elements.

e Start with permutation a[0] to a[N-1].

* For each value of i:
- swap a[i] into position 0
- enumerate all (N—1)! permutations of a[1] to a[N-1]
- clean up (swap a[i] back to original position)

// place N-k rooks in a[k] to a[N-1]
private void enumerate (int k)

{
if (k == N)
{ process(); return; }

for (int i = k; i < N; i++4)
{
exch(k, i) ;
enumerate (k+1) ;
exch (i, k); <«—— cleanup

o

java Rooks 4

2

o followed by
perms of 1 2 3

1 followed by
perms of 0 2 3

2 followed by
perms of 1 0 3

3 followed by
permsof1 2 0

O O MNNDN PR PKFEWWOOR HIWWMNDOO[w WNDNDRRE
R N OF ONDNPRPR OWER WOIO N WO WDNEFEDNdNMNWRER W

O =3 W W W W WWMNMNDMNMDMDMNMMNMMNMNHFHRKFRRFRKFREKEREKEOOOOOO

1

—_— N R PR ONO|IIOFR,R P WO WINMNoO O WwdNWINhNEFEFEFE WDNDW

a[N-1]

Enumerating permutations

public Rooks (int N)

% java Rooks 2

{ 01
this.N = N; 10
= new int|[N]; .
for (int i = 0; i < N; i++) java Rooks 3
2

a[i] = i;
enumerate (0) ;

private void enumerate (int k)
{ /* see previous slide */ }

<«—— initial permutation

private void exch(int i, int j)

{ int t = a[i]; ali]

= a[j]l; a[j]l = t; }

10

4-rooks search tree

I

solutions

=

11

N-rooks problem: back-of-envelope running time estimate

Slow way to compute N'!.

% java Rooks
5040

% java Rooks
40320

% java Rooks
362880

% java Rooks
3628800

% java Rooks

7 | we -1

8 | we -1

9 | we -1

10 | we -1

25 | we -1

Hypothesis. Running time is about 2 (N! / 8!) seconds.

instant

1.6 seconds

15 seconds

170 seconds

forever

12

» backtracking

13

N-queens problem

Q. How many ways are there to place N queens on an N-by-N board so that

no queen can attack any other?

a[1] = 6 means the queen
.nnnnn from row 1 is in column 6
¥
w
W
L 0

IE

€

lnt[] a = { 2, 7, 3, 6, 0, 5/ 1/ 4 };

Representation. No two queens in the same row or column = permutation.
Additional constraint. No diagonal attack is possible.

Challenge. Enumerate (or even count) the solutions. «— unlike N-rooks problem,
nobody knows answer for N > 30

14

4-queens search tree

diagonal conflict
on partial solution:
no point going deeper

@

=

Xnmrz'

15

4-queens search tree (pruned)

"backtrack" on

diagonal conflicts

)

®

Xlutitz

16

N-queens problem: backtracking solution

Backtracking paradigm. Iterate through elements of search space.
* When there are several possible choices, make one choice and recur.
» If the choice is a dead end, backtrack to previous choice,

and make next available choice.

Benefit. Identifying dead ends allows us to prune the search tree.

Ex. [backtracking for N-queens problem]
e Dead end: a diagonal conflict.

* Pruning: backtrack and try next column when diagonal conflict found.

17

N-queens problem: backtracking solution

% java Queens 4

private boolean backtrack (int k) 1302
{ 2031
for (int i = 0; i < k; i++)
{ % java Queens 5
if ((a[i]l - alk]) (k - i)) return true; 02413
if ((a[k] - a[i]) (k - i)) return true; 03142
} 13024
return false; 1420 3
203114
24130
31420
302141
41302
42031
% java Queens 6
135024
251403
304152
420531

al[o0] a[N-1]

18

N-queens problem: effectiveness of backtracking

Pruning the search tree leads to enormous time savings.

2 0 2

3 0 6

4 2 24

5 10 120

6 4 720

7 40 5,040

8 92 40,320

9 352 362,880

10 724 3,628,800
11 2,680 39,916,800
12 14,200 479,001,600
13 73,712 6,227,020,800
14 365,596 87,178,291,200

N-queens problem: How many solutions?

% java Queens
73712

% java Queens
365596

% java Queens
2279184

% java Queens
14772512

% java Queens

13

14

15

16

17

wC

wC

wC

wC

wC

Hypothesis. Running time is about (V! / 2.5V)/ 43,000 seconds.

1.1 seconds

5.4 seconds

29 seconds

210 seconds

1352 seconds

Conjecture. Q(N) ~ N! / ¢V, where c is about 2.54.

20

21

Counting: Java implementation

Goal. Enumerate all N-digit base-R humbers.

Solution. Generalize binary counter in lecture warmup.

for (int r = 0; r < R; r++)

{

alk] =
enumerate (k+1) ;

java Counter 2 4

W ww wNDMNMNMMMNMNRFEFRFRPEFEFEFEPOOOO W
W NhDNF OWDMNMRFROWDMNMRFROWNDNDHRDO

java Counter 3 2
0

H HKHERHOOOO W
H HOORHKRKR OO
H OKH OROHR

a[0] a[N-1]

22

Counting application: Sudoku

Goal. Fill 9-by-9 grid so that every row, column, and box contains
each of the digits 1 through 9.

& T
[2]9]
-

Hn

=

T

Remark. Natural generalization is NP-complete.

23

Counting application: Sudoku

Goal. Fill 9-by-9 grid so that every row, column, and box contains
each of the digits 1 through 9.

2 9 4 6 1 5‘
9 3 4 5 6 7 8
nl 6 7 3 8 2 4 9
1 7 5 9 3 8“
6 9 4“2 1 5 7
8 5 2 6 7 4 3
2“3 1 5 7 8

4 8 1 396 2

8 2 4 9 3 1

[+))
~
(6]

Solution. Enumerate all 81-digit base-9 numbers (with backtracking).

all

using digits 1 t0 9 —— n
0 1 2 3

4 5 6 7 8

Sudoku: backtracking solution

Iterate through elements of search space.

* For each empty cell, there are 9 possible choices.
* Make one choice and recur.

» If you find a conflict in row, column, or box, then backtrack.

AT

3

\9

nn\ backtrack on 3, 4,5, 7, 8,9

25

Sudoku: Java implementation

if (k == 81)
{ process(); return; }

if (a[k] '= 0)
{ enumerate(k+1l); return; }

for (int r = 1; r <= 9;
{
alk] = r;
if (!'backtrack(k))
enumerate (k+1) ;

found a solution

cell k initially filled in;
recur on next cell

try 9 possible digits
for cell k

unless it violates a
Sudoku constraint
(see booksite for code)

clean up

O O O O W O Ul O J o°
O O W O O » O O O
O O O O O O O o

o B N 0 W K Ul © J o
N 0 0w Uy D WN
U P, W N O J o b

more board. txt

8

O O o B OO ON O
O J4 O O o O O o
O O O O O O o B~

o
o

O U O O OO O o Ww
©O O O W ON O O

java Sudoku

8

o W o Rk & DN
N 9P o0 0 ©O W L
B W 09I D W oo
© U0 9 P ODNMN o W

4

6

0

W o W U N IR, A
RN D WY o © 0 WU

O O b O OO O O O

board. txt

26

27

Enumerating subsets: natural binary encoding

Given N elements, enumerate all 2" subsets.
e Count in binary from 0 to 2V - 1.

* Bit i represents element i.

e If 1, in subset; if 0, not in subset.

i binary subset complement
0 00O00O0 empty 4 321
1 0001 1 4 3 2
2 0010 2 4 31
3 0011 21 4 3
4 0100 3 4 21
5 0101 31 4 2
6 0110 3 2 4 1
7 0111 321 4
8 1000 4 321
9 1001 4 1 3 2
10 1010 4 2 31
11 1011 4 21 3
12 1100 4 3 21
13 1101 4 31 2
14 1110 4 3 2 1
15 1111 4 321 empty

28

Enumerating subsets: natural binary encoding

Given N elements, enumerate all 2V subsets.
e Count in binary from 0 to 2V - 1.

* Maintain array a[] where a[i] represents element i.
e Tf 1, a[i] in subset; if 0, a[i] not in subset.

Binary counter from warmup does the job.

private void enumerate (int k)
{

if (k == N)

{ process(); return; }

enumerate (k+1) ;

alk] = 1;

enumerate (k+1) ;

a[n] = 0;

Digression: Samuel Beckett play

Quad. Starting with empty stage, 4 characters enter and exit
one at a time, such that each subset of actors appears exactly once.

code subset move
0000 empty
0001 1 enter 1
0011 2 1 enter 2
0010 2 exit 1
0110 3 2 enter 3
0111 321 enter 1
0101 31 exit 2
0100 3 exit 1
1100 4 3 enter 4
1101 4 31 enter 1
1111 4321 enter 2
1110 4 3 2 exit 1
1010 4 2 exit 3
1011 4 2 1 enter 1
1001 4 1 exit 2
1000 4 exit 1
)
|

ruler function

Digression: Samuel Beckett play

Quad. Starting with empty stage, 4 characters enter and exit
one at a time, such that each subset of actors appears exactly once.

“faceless, emotionless one of the far future, a world where people are
born, go through prescribed movements, fear non-being even though their
lives are meaningless, and then they disappear or die.” — Sidney Homan

31

Binary reflected gray code

Def. The k-bit binary reflected Gray code is:
e The (k—1) bit code with a O prepended to each word, followed by
e The (k—1) bit code in reverse order, with a 1 prepended to each word.

1-bit code 3-bit code
' ¥

2-bit o 4-bit o[o 0 0
0|1 0/0 0 1
1 0jo11
1|0 X 0(0 10
1-bit code 0(1 10
(reversed) 0l1 11
2-bit code 0|1 01
¢ 0(1 00
3-bit o[0 0 111 00
0(0 1 1/1 01
0(1 1 1111
0(1 0 1/(1 10
1(1 0 1/010
111 1/01 1
1(0 1 1/00 1
1(00 1/000
| T

2-bit code

(reversed)

a[0] a[N-1]

Enumerating subsets using Gray code

Two simple changes to binary counter from warmup:
 Flip ark] instead of setting it to 1.
 Eliminate cleanup.

Gray code binary counter standard binary counter (from warmup)
// all bit strings in a[k] to a[N-1] // all bit strings in a[k] to a[N-1]
private void enumerate (int k) private void enumerate (int k)
{ {
if (k == N) if (k == N)
{ process(); return; |} { process(); return; }
enumerate (k+1) ; enumerate (k+1) ;
alk] =1 - a[k]; oo o alk] = 1; 00 0
enumerate (k+1) ; olo 1 enumerate (k+1) ; 00 1
} alk] = 0;
0|11 010
| 0|1 Ow i | 011
111 0 same values 100
1111 since no cleanup 101
110 1 110
110 0 111

E

Advantage. Only one item in subset changes at a time. atolaiv-id

33

More applications of Gray codes

3-bit rotary encoder 8-bit rotary encoder

JITTITT

Towers of Hanoi Chinese ring puzzle

34

Scheduling

Scheduling (set partitioning). Given N jobs of varying length, divide among
two machines to minimize the makespan (time the last job finishes).

\

or, equivalently, difference
between finish times

cost

|—

job - machine 0 0 2

0 1.41 machine 1 1 3
1 1.73
2 2.00 machine 0 0 3
3 2.23
machine 1 1 2

.09

Remark. This scheduling problem is NP-complete.

35

Scheduling (full implementation)

trace of
% java Scheduler 4 < jobs.txt

all finish times cost

public Scheduler (double[] jobs)
{
this.N = jobs.length;
this.jobs = jobs;
a = new int[N];
b = new int[N];
enumerate (N) ;

private void process()
{
if (cost(a) < cost(b))
for (int i = 0; i1 < N; i++)
b[i] = a[i];

Scheduling: improvements

Many opportunities (details omitted).
* Fix last job to be on machine O (quick factor-of-two improvement).
* Maintain difference in finish times (instead of recomputing from scratch).
* Backtrack when partial schedule cannot beat best known.
(check total against goal: half of total job times)

private void enumerate (int k)
{
if (k == N-1)
{ process(); return; }
if (backtrack(k)) return;
enumerate (k+1) ;
alk] =1 - a[k];
enumerate (k+1) ;

* Process all 2¢ subsets of last & jobs, keep results in memory,
(reduces time to 2V-* when 2 memory available).

» paths in a graph

38

Enumerating all paths on a grid

Goal. Enumerate all simple paths on a grid of adjacent sites.

no two atoms can occupy
same position at same time

7

Application. Self-avoiding lattice walk to model polymer chains.

39

Enumerating all paths on a grid: Boggle

Boggle. Find all words that can be formed by tracing a simple path of
adjacent cubes (left, right, up, down, diagonal).

Pruning. Stop as soon as no word in dictionary contains string of letters on

current path as a prefix = use a trie. =

BA
BAX

40

Boggle: Java implementation

string of letters on current path to (i, j)

if ((1 <0 |] i > N) ||
(3 <0 1] J>N ||
(visited[i] []3]) I
!dictionary.containsAsPrefix (prefix)) backtrack
return;

visited[i] [j] = true;
prefix = prefix + board[i] []j]:

add current character

if (dictionary.contains (prefix)) 4t set of found .
found.add (prefix) ; add to set of found words

for (int ii = -1; ii <= 1; ii++)
for (int jj = -1; jj <= 1; jj++)
dfs (prefix, i + ii, j + jj);

visited[i][j] = false; clean up

try all possibilities

41

Hamilton path

Goal. Find a simple path that visits every vertex exactly once.

visit every edge exactly once

e

Remark. Euler path easy, but Hamilton path is NP-complete.

42

Knight's tour

Goal. Find a sequence of moves for a knight so that (starting from any
desired square) it visits every square on a chessboard exactly once.

A
N2

NRE N

e
AN
° ° <\7\
\

<
X

A

W M
/i

Y
Q

N

SRS
-

IS

legal knight moves a knight's tour

Solution. Find a Hamilton path in knight's graph.

43

Hamilton path: backtracking solution

Backtracking solution. To find Hamilton path starting at v :
e Add v to current path.
* For each vertex w adjacent to v
- find a simple path starting at w using all remaining vertices
* Clean up: remove v from current path.

Q. How fo implement?
A. Add cleanup to DFS (lI)

44

Hamilton path: Java implementation

public HamiltonPath (Graph G)
{
marked = new boolean[G.V()];
for (int v = 0; v < G.V(); v++)
dfs (G, v, 1);

private void dfs(Graph G, int v, int depth)
{

\ length of current path
(depth of recursion)

marked[v] = true;
found one if (depth == G.V()) count++;

for (int w : G.adj(v))

backtrack if w is
- ' ;
if (!marked[w]) dfs(G, w, depth+l); < already part of path

marked[v] = false; <«—— cleanup

45

Exhaustive search: summary

N-rooks

N-queens

Sudoku

scheduling

Boggle

Hamilton path

permutations

permutations

base-9 numbers

subsets

paths in a grid

paths in a graph

no

yes

yes

yes

yes

yes

46

The longest path

Woh-oh-oh-oh, find the longest path!
Woh-oh-oh-oh, find the longest path!

If you said P is NP tonight,

There would still be papers left to write,
I have a weakness,

I'm addicted to completeness,

And I keep searching for the longest path.

The algorithm I would like to see
Is of polynomial degree,

But it's elusive:

Nobody has found conclusive

Evidence that we can find a longest path.

I have been hard working for so long.
I swear it's right, and he marks it wrong.

Some how I'll feel sorry when it's done: GPA 2.1

Is more than I hope for.

Garey, Johnson, Karp and other men (and women)

Tried to make it order N log N.
Am I a mad fool

If I spend my life in grad school,
Forever following the longest path?

Woh-oh-oh-oh, find the longest path!
Woh-oh-oh-oh, find the longest path!
Woh-oh-oh-oh, find the longest path.

Recorded by Dan Barrett in 1988 while a student
at Johns Hopkins during a difficult algorithms final

47

That's all, folks: keep searching!

The world’s longest path (Sendero de Chile): 9,700 km.
(originally scheduled for completion in 2010; now delayed until 2038)

48

