5.4 Regular Expressions

RE expressnons Qcheck
S Matchi |ng =

Pattern
searchcharacters
estring -
g3 mattih b
5 2 7 _€Xampie
L5 Buceed e :
- 4= P Ar o Sl » regular expressions » regular expressions
5 b text]
=P g » REs and NFAs
B34 Lequarerersioen o F » NFA simulation
character NFA :
left o o >
transition .con‘structlon
2 smngslanguage » applications
©wo code
i STATE
Algorithms, 4™ Edition . Robert Sedgewick and Kevin Wayne . Copyright © 2002-2010 - April 11,2011 7:57:28 AM 2
Pattern matching Pattern matching: applications
Substring search. Find a single string in text. Test if a string matches some pattern.
Pattern matching. Find one of a specified set of strings in text. * Process natural language.
* Scan for virus signatures.
* Access information in digital libraries.
Ex. [genomics] * Filter text (spam, NetNanny, Carnivore, malware).
* Fragile X syndrome is a common cause of mental retardation. * Validate data-entry fields (dates, email, URL, credit card).
* Human genome contains triplet repeats of cee or ace, * Search for markers in human genome using PROSITE patterns.

bracketed by cce at the beginning and cre at the end.
* Number of repeats is variable, and correlated with syndrome. Parse text files.
* Compile a Java program.
* Crawl and index the Web.
pattern GCG (CGG|AGG) *CTG * Read in data stored in ad hoc input file format.

* Automatically create Java documentation from Javadoc comments.
text GCGGCGTGTGTGCGAGAGAGTGGGTTTAAAGCTGGCGCGGAGGCGGCTGGCGCGGAGGCTG

Regular expressions Regular expression shortcuts

A regular expression is a notation to specify a (possibly infinite) set of strings. Additional operations are often added for convenience.
aEmeREgE Ex. [a-E]+ is shorthand for (a|B|CID|E) (a|B|C|D|E)*
example -
example -
concatenation every other string CUMULUS SUCCUBUS
wildcard
22 JUGULUM TUMULTUOUS
or AA | BAAB every other string
BAAB ABCDE ADE
at least 1 A (BC)+DE
22 AB ABCBCDE BCDE
closure AB*A
ABBBBBBBBA ABABA word camelCase
character classes [A-Za-z] [a-z]* o)
AAAAR Capitalized 4illegal
A(A|B)AAB every other string
ABAAB Wk [0-9] (5)-[0-9] {4} 08540-1321 111111111
exact! - =10~
parentheses Y 19072-5541 166-54-111
A AA
(AB) *A
ABABABABABA ABBA
complement [~AEIOU] {6} RHYTHM DECADE

Regular expression examples Regular expressions to the rescue

Notation is 5Uf‘p|"|$lﬂg|y expressive OH NO! THE KILLER || BUT T FIND THEM WE'D HAVE TO SEARCH
MUST HAVE ROLLOWED| | THROUGH 200 MB OF EMAILS LOOKING FOR
HER ON VACATION} SG"EF““‘IG FORMATIED LIKE AN ADDRESS!
|
9 |t~
.*SPB. * RASPBERRY SUBSPACE %
(contains the trigraph spb) CRISPBREAD SUBSPECIES
T Know
[0-9]1{3}-[0-9]1{2}-[0-9] {4} 166-11-4433 11-55555555 EXP?E?ﬁRIEOGIhAgl_(
(Social Security numbers) 166-45-1111 8675309
[a-z]+@ ([a-z]+\.)+ (edu|com) wayne@princeton.edu
spam@nowhere ﬁ x%
(valid email addresses) rs@princeton.edu
[$_A-Za-z] [$_A-Za-z0-9]* ident3 3a /
(valid Java identifiers) PatternMatcher ident#3 / /

and plays a well-understood role in the theory of computation.

http://xkcd.com/208

Can the average web surfer learn o use REs?

Google. Supports * for full word wildcard and | for union.

[Google Search: Mozilla [-[O[x]
. Fle Edt View Go Bookmsiks Ioos Window Help \
> > |

the = of seville'

D

New!

Web Images Groups News Froogle more »

GO ()8[6 [the * of seville" Search AP—:’:,‘:','::L:E‘""'

Web Results 1 - 10 of about 60,100 for * the * of seville™. (0.31 seconds)

News results for " the * of seville" - View all the latest headlines
9
Information about the City of Sevilla (Seville}, Andalu

.. Post a request on our Notice Board. Promote your business on this website;

emall sales@andalucia.com. Information about the City of Seville. ...
whwnw. andalucia. com/cities/sevilla.htm - 22k - Cached - Similar pages

Opera: Barber of Seville/ Marriage of Figaro - Financial Times - 3 hours ago

Universidad de Sevilla - [Translate this page |
INICIO | ESTUDIANTES | PROFESORES | PAS | INDICES | BUSCADOR | COMENTARIOS,
Complemento Autondmico, Eslatulu Espacio Europeo da Educacidn ...

www.us.es/ - 15k - Apr 18, 2004 - d - Similar pages

CATHOLIC ENCYCLOPEDIA: St. Isidore of Seville

... On the death of Leander, Isidore succeeded to the See of Seville. His long incumbency
to this office was spent in a period of disintegration and transition. ...

winw. newadvent. org/cathen/D8186a. htm - 32k - Cached - Similar pages

The Trickster of Seville and the Stone Guest
Commentary and analysis of Tirso de Molina's "The Trickster of Seville", one of the seventeenth century's.
www. modlang.fsu.edu/darst/trickster.htm - Similar pages

DR D& I = Y Adblock /

Can the average programmer learn to use REs?

Perl RE for valid RFC822 email addresses

(2:(2:\r\n) 2 [\t])'(’ .\[\] \000-’ \0311*(” (2:(2:\r\n) 2 \tl)ﬂ\zl(" IN["O<>@,;:\\" \[\l]l)l"(’ A\"\x\\J 1\ I(’ 2:\r\n) 2[\t]))*" (2:(2:
\z\n)"l \tl)')(" ~()<8, \[\) \000 \031]0(?: \z\n)"[\tl)ol\zl("‘l\[0<>e,;: NI 1" 28\
t]))*" (2: (2 i(2: \

? r\n) 2[\t])*(?:
A\r\n) 2 [\t!)"))‘E(" (2:\x\n) 2[\t])*(*.\[\] \000- \031]&(n) 2 [\t])+1\z] (2 l\["l)()@ ;
A\ (21 (

\r\n) 2[\£])*(2: [~ () <>€ \[\l \000-\031]+(2: (2 \n)“! \t])+|\z\(“ N[O, 7\ \I\]]))I\[([\[\]\x\\]l\\)'\l("
\". \I\l \uon \031]+(2 2:\r\n) 2 [\t!)+|\z|("-!\|"()<>@., A\ \!\!]y)l“(AN 2:\r\n)2[\t]
W\ \n) 2[\t])+1\2 (<>@ ".\[\]l))!\l([“\[\l\r\\ll\\)'\l(
)"[\t])+1\z| (2= () A1) INCCANININEWT L) *\] ?:
\n) 2 [\:l)¢|\=|('>[\i”()<>e NI INDOANININE\NT L) *\ (2
<>@,;:\\ NN \[\]\!\\]I\\)"\] l“ \n) 2 [\t])"))")
"(2: [M\"\r\\] * (2 (2:\x

[\t

\". \[\l])H"(’ [‘\"\t\\]l\\ I(’ (2:\r\n)?[\t
\". \[\ll)l\\[([”\[\]\r\\]l\\)'\](
A" AN INCOAN NS\ W)
AN ANz W Il"
) 20 \eD+I\2] (>=[\[") <>€,
WA 000~ \oauu‘» (2 (i\e\my 2 \q)+|\z|
(7<> ,,,\\ AN \\700 \031]+(2:

?2:(2: (2

? . l 1 \000-\031]+(r\n) 2[\t])+I\Z| (?>=[\[()<>
s x\n)’[\e | 2 W\ T\] \000-\031]+ (2: (2: (2:\x\n) 2(\:])u\zuv»[\:"oo
l \c]))'“(" (2:\r\n)? 2:\E\m) 20 \E1)* (22 (2: (2: (2 0<>8, 5 :\\ -\031]+(2: (2: (2:
\x\n)’[\:m*"(’ (:\2\n) 2 \ED)#) (2:\. (2: (2 ?
(.: ‘\"\ 11 (2:(2:\r\n) 2[\t]))*" (2: (2:\r\n) 2[\tl)"?)'@("
AN INE \[\]\r\\]l\\ I*\](2:(2:\x\n) 2[\t])*) (? 0
A1) NN ININE\NT 1NN *\] (22 (2:\x\n) 2[\t])*)) *| (2: >@4
25(2ARM 2L \E)) 7 (35 (ARM 2L \ED)) N2 (2\R\R) 7LD+ (2:8 (72 (106, ¢
AR >'\1 (2: (2:\5\n) 2[\E1)*) (2:\. (2: (2:\r\n) 2[\E1)*(2: [1 (<>, 7:\\".
PRI IANYS 7‘\](2(2:\r\n) 2[\t])*)) *(2:,@(?
. x\n)2[\t])*) (2:\. (2:(

r\l:A)?[L1 *))) *: (2

:\

)<>@, 5\ \l 1) INDCANINN

e, ; \\ \[\]]))I\[([\[\]\r\\]
\"\r\\]|

(2:\x\n) 2[\t])*(2:[* ()()@,,v
:\

>0
[\tl)"(’ "<, ;:\!

s (2:\r\ \t]))*" (2: (2:\r\n) 2 [H] r\n)? . 008
ANEWTINL (25 (2:\r\m) 21 \E1)) ** (21 (2:\£\m) 2 [\n)'))*a(‘ (2:\x\n) 2[\&])*(2: [~ ()<>@,; :\\".\[\] \000- :
D INLAANINARNT N S\ (2 (2:Az\m) 2L AED W) (230 (2: (2:\z\m) 2] \e])* (2 I 08,7\ TN \000-\0311+ (2: (2: (2
D)INLANT \r\\]l\\ 7‘\](’ (" \t\n)’[A1) *))*¥\>(2: (2: s> :
".\[\H))I \11 \r\n)2[\t]))*"(?:
A" <>e [\ll)l\ \.1(?:(2:\x\n)? 1(2:\r\n) ?[\t

l \r Nl
D+I\zI(—[\l"()<>9 ; \\”.\I\]l))I\l(["\(\l\r\\ll\\)"\](’ (2: \x\n)"[\ED) (2:\. (2
\ZI("’!\I"(K)@.; ANADID VTN NI 5\ (22 (2:\2\m) 20 \eD))] (2: (% ()<>@.
" 20 \t]))*" (2

:(\r\n)"
NN o<e
21 (2:\r\m) 21 \ED)+1\2] (2
\r\n)"l \t])+1\z] (?=
\r\n)?[\tll’l\zl("‘
[

\:l)o\

\I\]l))l\[([NASNANTANS)\I (23 (2:\x\m) 2 [:

\!\!]))I“(" EANRNTINL 122 (2:\5\n) 20 \ED))*" (7: (2:\x\m) 2 [\t])')(" \.(2:(2: \x\n)’l AL *(2: (2 0<;
2\ I(" (’ \t\n)’[\t]))* ?:\r\n) 2[\t])*))* (:

vl\z D INCCANINNS\NT N *\] (20 (2 \r\n)"[A1) *) (2:\. (2 (n) 2 [\t])*(2: [~

I("[\l ()()E \[\H))I\H["\[\l\r\\ll\\ I\ (2: (2:\5\0) 20 \£])*)) *\>(2: (22 \z\n)"[\t])*)) %) 2;\s*%)

[0<e,;
2:\r\n) 2 [\t]?*l\z\(’-l\[
2:\r\n)2[\t])
£\n) 2[\t])*l\z

http http://www.ex-parrot.com/~pdw/Mail-RFC822-Address.html

Can the average TV viewer learn to use REs?

TiVo. WishList has very limited pattern matching.

Using * in WishList Searches. To search for similar words in Keyword and Title
WishList searches, use the asterisk (*) as a special symbol that replaces the endings of
words. For example, the keyword A/RP* would find shows containing “airport,”

“airplane,” “airplanes,” as well as the movie “Airplane!” To enter an asterisk, press the

SLOW (@) button as you are spelling out your keyword or title.

The asterisk can be helpful when you're looking for a range of similar words, as in the
example above, or if you're just not sure how something is spelled. Pop quiz: is it
“irresistible™ or “irresistable?” Use the keyword JRRESIST* and don’t worry about it!
Two things to note about using the asterisk:

+ Itcan only be used at a word’s end: it cannot be used to omit letters at the beginning or
in the middle of a word. (For example, AIR*NE or *PLANE would not work.)

Reference: page 76, Hughes DirectTV TiVo manual

Regular expression caveat

Writing a RE is like writing a program.

* Need to understand programming model.
* Can be easier to write than read.

* Can be difficult to debug.

“ Some people, when confronted with a problem, think
' know I'll use regular expressions.' Now they have
two problems.
— Jamie Zawinski (flame war on alt.religion.emacs)

Bottom line. REs are amazingly powerful and expressive,
but using them in applications can be amazingly complex and error-prone.

Pattern matching implementation: basic plan (revised)

Overview is similar to KMP.
* No backup in text input stream.

* Quadratic-time guarantee (linear-time typical).

Ken Thompson
Turing Award '83

Underlying abstraction. Nondeterministic finite state automata (NFA).

Basic plan. [apply Kleene's theorem]
* Build NFA from RE.
e Simulate NFA with text as input.

text
NFA for pattern

AAAABD '# (A*B|AC)D

Q. What exactly is an NFA?

y

&jecy

pattern
matches text

pattern does not

match text

Pattern matching implementation: basic plan (first attempt)

Overview is the same as for KMP.
* No backup in text input stream.

* Linear-time guarantee.

Ken Thompson
Turing Award '83

Underlying abstraction. Deterministic finite state automata (DFA).

Basic plan. [apply Kleene's theorem]
* Build DFA from RE.
 Simulate DFA with text as input.

pattern

x
accep matches text

text
DFA for pattern

AAAABD |mmms (n.p|ac)D ejecy

pattern does not
match text

Bad news. Basic plan is infeasible (DFA may have exponential number of states).

Duality

RE. Concise way to describe a set of strings.
DFA. Machine to recognize whether a given string is in a given seft.

Kleene's theorem.

* For any DFA, there exists a RE that describes the same set of strings.
* For any RE, there exists a DFA that recognizes the same set of strings.

0
—>
0% | (0%10%10%10%)* /‘ \
1
—®
number of 1's is a multiple of 3 C? 0\)

number of 1's is a multiple of 3

RE DFA

Good news. Basic plan works in theory.
Bad news. Basic plan fails in practice.

Nondeterministic finite-state automata

Regular-expression-matching NFA.

* RE enclosed in parentheses.

* One state per RE character (start = 0, accept = M).

* Red e-transition (change state, but don't scan input).

* Black match transition (change state and scan to next char).
* Accept if any sequence of transitions ends in accept state.

Nondeterminism.
* One view: machine can guess the proper sequence of state transitions.
* Another view: sequence is a proof that the machine accepts the text.

O~~~ O
accept state

NFA corresponding to the pattern ((A * B | AC) D)

Nondeterministic finite-state automata

Q. Is aaaaBp matched by NFA?
A. VYes, because some sequence of legal transitions ends in state 11.
[even though some sequences end in wrong state or stall]

A A A
0123234 ~__ o way out
/ of state 4
wrong guess if input is
A A A A B D
B
0—>1—>6—>7 ~__no way out
of state 7

O~ D~ D0
accept state

NFA corresponding to the pattern ((A * B | AC) D)

Nondeterministic finite-state automata

Q. Is aaaaBp matched by NFA?
A. Yes, because some sequence of legal transitions ends in state 11.

A A A A B D
0—>l->2/—>3—>2->3->2—>3-’2—>3—’4->5-'8—’9—’10 —-11

match transition: e-transition: accept state reached
scan to next input character change state and all text characters scanned:
and change state with no match pattern found

0

1

O—

O oMo oI OoR ol ooSy
accept state

NFA corresponding to the pattern ((A * B | AC) D)

Nondeterministic finite-state automata

Q. Is aaaac matched by NFA?
A. No, because no sequence of legal transitions ends in state 11.

[but need to argue about all possible sequences]

0

O—

1

A A A A C

0—>1—>2—>3—>2—>3—>2—>3—>2—>3—>4 ~__noway out
of state 4

O=oMoNo gICBET OB oy
accept state

NFA corresponding to the pattern ((A * B | AC) D)

20

Nondeterminism Partial proof of Kleene's theorem (RE = DFA)

Q. How to determine whether a string is matched by an automaton? For any RE, there exists a DFA that recognizes the same set of strings.
* Given an RE, construct an NFA (stay tuned)

DFA. Deterministic = exactly one applicable transition. * Givenan NFA, construct a DFA (see construction below)

NFA. Nondeterministic = can be several applicable transitions; 0 ERIETLE? @ DI e Feasg ied i i Bigiag2 a9 @ ghei WA

Feeeliclseletyhelnint e ne] * create a DFA state for every set of NFA states

* systematically infer transitions

Q. How to simulate NFA?

NFA
A. Systematically consider all possible transition sequences.

(15—
&

@_' 5@) GQA)_'é)_'SQD_'q@)—'é_;H strings not containing BBA

accept state
. . N .
NFA corresponding to the patter ¢ (A * B | A C) D) Problem: N states in NFA = 2N states in DFA

Insight: Need fo consider all possible transitions to simulate NFA

22

Pattern matching implementation: basic plan (revised)

Overview is similar to KMP.
* No backup in text input stream.

* Quadratic-time guarantee (linear-time typical).

Ken Thompson
Turing Award '83

Underlying abstraction. Nondeterministic finite state automata (NFA).

Basic plan. [apply Kleene's theorem]
* Build NFA from RE.

» Simulate NFA with text as input. » NFA simulation
pattern

x
ad‘eo matches text

text
NFA for pattern

AAAABD |mmm (asp|ac)D Fejecs

pattern does not
match text

Q. How to construct NFA and how to efficiently simulate NFA?

NFA representation

State names. Integers from 0 to M.

number of symbols in RE

Match-transitions. Keep regular expression in array re[].

e-transitions. Store in a digraph G.
e 0—1,1—2,1—>6, 2—3, 3—2, 3—4, 58, 8—9, 10—>11

0 | 5 /\

O~ EE~O~T_O—~0=0~0—~0;

accept state

NFA corresponding to the pattern ((A * B | AC) D)

NFA simulation

Q. How to efficiently simulate an NFA?
A. Maintain set of all possible states that NFA could be in
after reading in the first i text characters.

all states reachable
after reading i symbols

possible transitions on
reading (i+1)st symbolc before reading next symbol after reading i+1 symbols

possible null transitions

One step in simulating an NFA

all states reachable

NFA simulation example

0 1 2 3 4 6 : setof states reachable via e-transitions from start

3 7 : setof states reachable after matching A
0 1 2 b 4 5 6 b

2 3 4 7 : setof states reachable via e-transitions after matching A
0 1 5 6 7 8 9

&=o—0 @
3 : set of states reachable after matching A A

0 1 2 3 4 5 6 7 8 9

2 3 4 : set of states reachable via e-transitions after matching A A

0 1 Z()_K b

5 6 7 8 9

Simulationof ((A * B | AC) D) NFA forinput A A BD

10

10

10

10

10

Q. How to perform reachability?

NFA simulation example (continued)

2 3 4 : setof states reachable via e-transitions after matching A A

0 1 2 3 4 5 6 7 8 9 10

5 : set of states reachable after matching A A B
0 1 2 3 4 5 6 7 8 9 10

®—-0

5 8 9 : set of states reachable via e-transitions after matching A A B

0 1 2 3 4 5 6 7 8 9

10

10 : set of states reachable after matching A A B D
0 1 2 3 4 5 6 7 8

o=

10 11 : set of states reachable via e-transitions after matching A A B D
0 1 2 3 4 5 6 7 8 9 10

1

11

11

O—O
/

accept !

Simulationof ((A * B | AC) D) NFA forinput A A B D

26

28

Digraph reachability

Recall Section 4.2. Find all vertices reachable from a given set of vertices.

public class DirectedDFS

DirectedDFS (Digraph G, int s)

DirectedDFS (Digraph G,

Iterable<Integer> sources)

boolean marked(int v)

find vertices reachable from s

find vertices reachable from sources

is v reachable from source(s)?

NFA simulation: Java implementation

public boolean recognizes (String txt)
{
Bag<Integer> pc = new Bag<Integer>();
DirectedDFS dfs = new DirectedDFS (G, 0);
for (int v = 0; v < G.V(); v++)
if (dfs.marked(v)) pc.add(v);

for (int i = 0; i < txt.length(); i++)
{
Bag<Integer> match = new Bag<Integer>();
for (int v : pc)
{
if (v == M) continue;
if ((re[v] == txt.charAt(i)) || re[v
match.add (v+1) ;
}

dfs = new DirectedDFS (G, match) ;
pc = new Bag<Integer>();
for (int v = 0; v < G.V(); v++)
if (dfs.marked(v)) pc.add(v);
}

for (int v : pc)
if (v == M) return true;
return false;

L")

states reachable from
start by e-transitions

states reachable after
scanning past txt.charAt (i)

follow e-transitions

accept iff ends in state M

NFA simulation: Java implementation

public class NFA

{

// match transitions
// epsilon transitions
// number of states

private char[] re;
private Digraph G;
private int M;

public NFA(String regexp)
{

M = regexp.length() ;

re = regexp.toArray();

G = buildEpsilonTransitionsGraph() ;
}

public boolean recognizes(String txt)
{ /* see next slide */ '}

<«——— stay tuned

NFA simulation: analysis

30

Proposition. Determining whether an N-character text string is recognized by

the NFA corresponding to an M-character pattern takes time proportional to

M N in the worst case.

Pf. For each of the N text characters, we iterate through a set of states of

size no more than M and run DFS on the graph of e-transitions.

(The NFA construction we consider ensures the humber of edges in G < 3M.)

0

@_'l

TN

Do o0

accept state

NFA corresponding to thepattern ((A * B | AC) D)

32

Building an NFA corresponding to an RE

States. Include a state for each symbol in the RE, plus an accept state.

» NFA construction

Building an NFA corresponding to an RE

Concatenation. Add match-transition edge from state corresponding
to characters in the alphabet to next state.

Alphabet. a B c D
Metacharacters. () . * |

0 1 2 3 4 5 6 7 8 9 10 11
@@@—»@@—*@—»@@*@/
accept state
NFA corresponding to the pattern ((A * B | AC) D)

0 1 2 3 4 5 6 7 8 9 10 11
© O ® OONCHONMOMNO, P
accept state
NFA corresponding to the pattern ((A * B | AC) D)

34

Building an NFA corresponding to an RE

Parentheses. Add e-transition edge from parentheses to next state.

0 1 2 3 4 5 6 7 8 9 10 11
O—0O—m—0 -0 O—>C)—>O—>O—>O—;
accept state
NFA corresponding to the pattern (C A * B | AC) D)

36

Building an NFA corresponding to an RE

Closure. Add three e-transition edges for each * operator.

single-character closure closure expression

G.addEdge(i, i+1);

G.addEdge(i+1, i); G.addEdge(1p, i+1);

G.addEdge(i+1, 1p);

OO~ o)
accept state

NFA corresponding to the pattern ((A * B | AC) D)

NFA construction: implementation
Goal. Write a program to build the e-transition digraph.

Challenges. Need to remember left parentheses to implement closure and or;
also need to remember | to implement or.

Solution. Maintain a stack.

* (symbol: push (onto stack.

* | symbol: push | onto stack.

*) symbol: pop corresponding (and possibly intervening |;
add e-transition edges for closure/or.

o /—\

S
accept state

NFA corresponding to the pattern ((A * B | AC) D)

Building an NFA corresponding to an RE

Or. Add two ¢-transition edges for each | operator.

or expression

G.addEdge(1p, or+l);
G.addEdge(or, 1i);

oO— @@%@%@7
ﬂCCCpt state

NFA corresponding to thepattern ((A * B | AC) D)

NFA construction: example

stack for
indices of 0
(sand |s @—'
(ops[1)
0
= 1
1 i
0 /
- 2
1
0
A 2 3

[or

@m

[orw

Building the NFA correspondingto ((A * B | AC) D)

38

40

NFA construction: example

5 <:}_’
o :
5 (:>__>
1
0] 8
/'/\CD_'
Lo} &
2 10
O—
PN

O—~®—>@—'O—'®—>O~O

Building the NFA correspondingto ((A * B | AC) D)

NFA construction: analysis

Proposition. Building the NFA corresponding to an M-character RE takes time

and space proportional to M.

Pf. For each of the M characters in the RE, we add at most three
e-transitions and execute at most two stack operations.

. TN

S
accept state

NFA corresponding to the pattern ((A * B | AC) D)

41

43

NFA construction: Java implementation

private Digraph buildEpsilonTransitionGraph() {
Digraph G = new Digraph (M+1) ;
Stack<Integer> ops = new Stack<Integer>();
for (int i = 0; i < M; i++) {

int 1p = i;
if (re[i] == '(' || re[i] == '|') ops.push(i);
else if (re[i] == ')"') {

int or = ops.pop();

if (refor] == '|") {

1lp = ops.pop();
G.addEdge (1p, or+l);
G.addEdge (or, 1i);

}

else 1lp = or;

}

if (i < M-1 && re[i+l] == '*') {
G.addEdge (1p, i+1);
G.addEdge (i+1, 1lp);

}

if (re[i] == '(' || re[i] == '*' || re[i] == "'
G.addEdge (i, i+l);
}

return G;

)')

» applications

left parentheses and |

or

closure
(needs lookahead)

metasymbols

42

44

Generalized regular expression print Typical grep application: crossword puzzles

Grep. Take a RE as a command-line argument and print the lines from
standard input having some substring that is matched by the RE.

public class GREP moy |
{ L
public static void main(String[] args) 2 -
String regexp = "(.*" + args[0] + ".*)"; T REasasubstring 3
= . R E
NFA nfa = new NFA(regexp); L also on booksite
while (StdIn.hasNextLine()) N

abalone
{ T

String line = StdIn.readLine();
if (nfa.recognizes(line))
StdOut.println(line) ;

abandon

} 3
}
B stricter
I u stricture

B
{ find lines containing uR .

c

T e

% grep 's..ict..' words.txt

constrictor

B I % more words.txt
TS

a '\
T aback dictionary
L|E (standard in Unix)
u abacus

Bottom line. Worst-case for grep (proportional o M N) is the same as for

elementary exact substring match.

45

Industrial-strength grep implementation Regular expressions in other languages

To complete the implementation: Broadly applicable programmer's tool.

* Add character classes. * Originated in Unix in the 1970s.

* Handle metacharacters. * Many languages support extended regular expressions.

* Add capturing capabilities. * Built into grep, awk, emacs, Perl, PHP, Python, JavaScript.

 Extend the closure operator.
) P . Iy print all lines containing NEWLINE which
 Error CheCkmg and recovery. G iy occurs in any file with a . java extension

* Greedy vs. reluctant matching.

% egrep '“[qwertyuiop]*[zxcvbnm]*$' words.txt | egrep '........... '
typewritten

PERL. Practical Extraction and Report Language.
Ex. Which substring(s) should be matched by the RE <blink>.*</blink> ?

5 0) sI£ ltolg" i e cors replace all occurrences of from
er. = -1 -e s rom (o] input.

P P g P with to in the file input. txt

reluctant reluctant

<blink>text</blink>some text<blink>more text</blink> % perl -n -e 'print if /~[A-Z][A-Za-z]*$/' words.txt «—— printall words that start
T with uppercase letter

greedy
do for each line
47

Regular expressions in Java

VCl“diTy checking. Does the input match the regexp?

Java sTring library. Use input.matches (regexp) for basic RE ma'rching.

public class Validate
{
public static void main(String[] args)
{
String regexp = args[0];
String input = args[l];
StdOut.println (input.matches (regexp)) ;
}
}
% java Validate "[$_A-Za-z][$_A-Za-z0-9]*" identl23 —

true

% java Validate "[a-z]+@([a-z]+\.)+(edu|com)" rs@cs.princeton.edu <—
true

% java Validate "[0-9]{3}-[0-9]{2}-[0-9]{4}" 166-11-4433 pa—
true

. legal Java identifier

valid email address

(simplified)

—— Social Security number

Harvesting information

49

RE pattern matching is implemented in Java's pattern and Matcher classes.

import java.util.regex.Pattern;
import java.util.regex.Matcher;

public class Harvester

{
public static void main(String[] args)
{
String regexp = args[0];
In in = new In(args[1]);
String input = in.readAll();
Pattern pattern = Pattern.compile (x:)

Matcher matcher = pattern.matcher (input) ;

compile() creates a

Pattern (NFA) from RE

matcher () creates a

Matcher (NFA simulator)
/ from NFA and text

£ind () looks for

while (matcher.find())

{
StdOut.println (matcher.group()) ;

}) \

the next match

\ group () returns
} the substring most

recently found by £ind ()

Harvesting information

Goal. Print all substrings of input that match a RE.

% java Harvester "gcg(cggl|agg)*ctg" chromosomeX.txt

gcgeggeggeggeggeggetg
gcgctg T
gcgetg harvest patterns from DNA

gcgeggeggeggaggeggaggeggetg

harvest links from website

|

% java Harvester "http://(\\w+\\.)* (\\w+)" http://www.cs.princeton.edu
http://www.princeton.edu

http://www.google.com

http://www.cs.princeton.edu/news

Algorithmic complexity attacks

Warning. Typical implementations do not guarantee performance!

Unix grep, Java, Perl

% java Validate "(alaa)*b" aaaaa aa aa aa 1.6 seconds
% java Validate " (alaa)*b" aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaac 3.7 seconds
% java Validate " (alaa)*b" aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaac 9.7 seconds
% java Validate " (alaa)*b" 23.2 seconds
% java Validate "(alaa)*b" aaaaa a a a aa 62.2 seconds
% java Validate "(alaa)*b" aaaaa a a a aaac 161.6 d

SpamAssassin regular expression.

% java RE "[a-z]+Q@[a-z]+([a-z\.]+\.)+[a-z]+" spammer@x..............c.ouuuu..

* Takes exponential time on pathological email addresses.
* Troublemaker can use such addresses to DOS a mail server.

50

52

Not-so-regular expressions

Back-references.
* \1 notation matches sub-expression that was matched earlier.
* Supported by typical RE implementations.

% java Harvester "\b(.+)\1\b" words.txt
beriberi \

couscous word boundary

Some non-regular languages.

» Set of strings of the form ww for some string w: beriberi.

* Set of bitstrings with an equal number of Os and 1s: o1110100.
» Set of Watson-Crick complemented palindromes: atttcggaaat.

Remark. Pattern matching with back-references is intractable.

Summary of pattern-matching algorithms

Programmer.
* Implement substring search via DFA simulation.
* Implement RE pattern matching via NFA simulation.

Theoretician.

* RE is a compact description of a set of strings.

* NFA is an abstract machine equivalent in power to RE.
» DFAs and REs have limitations.

You. Practical application of core CS principles.

Example of essential paradigm in computer science.
* Build intermediate abstractions.

* Pick the right ones!

* Solve important practical problems.

Context

Abstract machines, languages, and nondeterminism.
* Basis of the theory of computation.

* Intensively studied since the 1930s.

* Basis of programming languages.

Compiler. A program that translates a program to machine code.
* KMP string = DFA.

« grep RE = NFA.

* javac Java language = Java byte code.

pattern string RE program

unnecessary check if legal check if legal
compiler output DFA NFA byte code
simulator DFA simulator NFA simulator JVM

54

