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Pattern matching Pattern matching: applications
Substring search. Find a single string in text. Test if a string matches some pattern.
Pattern matching. Find one of a specified set of strings in text. * Process natural language.
* Scan for virus signatures.
* Access information in digital libraries.
Ex. [genomics] * Filter text (spam, NetNanny, Carnivore, malware).
* Fragile X syndrome is a common cause of mental retardation. * Validate data-entry fields (dates, email, URL, credit card).
* Human genome contains triplet repeats of cee or ace, * Search for markers in human genome using PROSITE patterns.

bracketed by cce at the beginning and cre at the end.
* Number of repeats is variable, and correlated with syndrome. Parse text files.
* Compile a Java program.
* Crawl and index the Web.
pattern  GCG (CGG|AGG) *CTG * Read in data stored in ad hoc input file format.

* Automatically create Java documentation from Javadoc comments.
text GCGGCGTGTGTGCGAGAGAGTGGGTTTAAAGCTGGCGCGGAGGCGGCTGGCGCGGAGGCTG



Regular expressions Regular expression shortcuts

A regular expression is a notation to specify a (possibly infinite) set of strings. Additional operations are often added for convenience.
aEmeREgE Ex. [a-E]+ is shorthand for (a|B|CID|E) (a|B|C|D|E)*
example -
example -
concatenation every other string CUMULUS SUCCUBUS
wildcard
22 JUGULUM TUMULTUOUS
or AA | BAAB every other string
BAAB ABCDE ADE
at least 1 A (BC)+DE
22 AB ABCBCDE BCDE
closure AB*A
ABBBBBBBBA ABABA word camelCase
character classes [A-Za-z] [a-z]* o )
AAAAR Capitalized 4illegal
A(A|B)AAB every other string
ABAAB Wk [0-9] (5)-[0-9] {4} 08540-1321 111111111
exact! - =10~
parentheses Y 19072-5541 166-54-111
A AA
(AB) *A
ABABABABABA ABBA
complement [~AEIOU] {6} RHYTHM DECADE

Regular expression examples Regular expressions to the rescue

Notation is 5Uf‘p|"|$lﬂg|y expressive OH NO! THE KILLER || BUT T FIND THEM WE'D HAVE TO SEARCH
MUST HAVE ROLLOWED| | THROUGH 200 MB OF EMAILS LOOKING FOR
HER ON VACATION} SG"EF““‘IG FORMATIED LIKE AN ADDRESS!
|
9 |t~
.*SPB. * RASPBERRY SUBSPACE %
(contains the trigraph spb) CRISPBREAD SUBSPECIES
T Know
[0-9]1{3}-[0-9]1{2}-[0-9] {4} 166-11-4433 11-55555555 EXP?E?ﬁRIEOGIhAgl_(
(Social Security numbers) 166-45-1111 8675309
[a-z]+@ ([a-z]+\.)+ (edu|com) wayne@princeton.edu
spam@nowhere ﬁ x%
(valid email addresses) rs@princeton.edu
[$_A-Za-z] [$_A-Za-z0-9]* ident3 3a /
(valid Java identifiers) PatternMatcher ident#3 / /

and plays a well-understood role in the theory of computation.

http://xkcd.com/208



Can the average web surfer learn o use REs?

Google. Supports * for full word wildcard and | for union.

[ Google Search: Mozilla [-[O[x]
. Fle Edt View Go Bookmsiks Ioos Window Help \
> > |

the = of seville'

D

New!

Web Images Groups News Froogle more »

GO ()8[6 [ the * of seville" Search AP—:’:,‘:','::L:E‘""'

Web Results 1 - 10 of about 60,100 for * the * of seville™. (0.31 seconds)

News results for " the * of seville" - View all the latest headlines
9
Information about the City of Sevilla (Seville}, Andalu

.. Post a request on our Notice Board. Promote your business on this website;

emall sales@andalucia.com. Information about the City of Seville. ...
whwnw. andalucia. com/cities/sevilla.htm - 22k - Cached - Similar pages

Opera: Barber of Seville/ Marriage of Figaro - Financial Times - 3 hours ago

Universidad de Sevilla - [ Translate this page |
INICIO | ESTUDIANTES | PROFESORES | PAS | INDICES | BUSCADOR | COMENTARIOS,
Complemento Autondmico, Eslatulu Espacio Europeo da Educacidn ...

www.us.es/ - 15k - Apr 18, 2004 - d - Similar pages

CATHOLIC ENCYCLOPEDIA: St. Isidore of Seville

... On the death of Leander, Isidore succeeded to the See of Seville. His long incumbency
to this office was spent in a period of disintegration and transition. ...

winw. newadvent. org/cathen/D8186a. htm - 32k - Cached - Similar pages

The Trickster of Seville and the Stone Guest
Commentary and analysis of Tirso de Molina's "The Trickster of Seville", one of the seventeenth century's.
www. modlang.fsu.edu/darst/trickster.htm - Similar pages

DR D& I = Y Adblock /

Can the average programmer learn to use REs?

Perl RE for valid RFC822 email addresses
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Can the average TV viewer learn to use REs?

TiVo. WishList has very limited pattern matching.

Using * in WishList Searches. To search for similar words in Keyword and Title
WishList searches, use the asterisk (*) as a special symbol that replaces the endings of
words. For example, the keyword A/RP* would find shows containing “airport,”

“airplane,” “airplanes,” as well as the movie “Airplane!” To enter an asterisk, press the

SLOW ( @ ) button as you are spelling out your keyword or title.

The asterisk can be helpful when you're looking for a range of similar words, as in the
example above, or if you're just not sure how something is spelled. Pop quiz: is it
“irresistible™ or “irresistable?” Use the keyword JRRESIST* and don’t worry about it!
Two things to note about using the asterisk:

+ Itcan only be used at a word’s end: it cannot be used to omit letters at the beginning or
in the middle of a word. (For example, AIR*NE or *PLANE would not work.)

Reference: page 76, Hughes DirectTV TiVo manual

Regular expression caveat

Writing a RE is like writing a program.

* Need to understand programming model.
* Can be easier to write than read.

* Can be difficult to debug.

“ Some people, when confronted with a problem, think
' know I'll use regular expressions.' Now they have
two problems.
— Jamie Zawinski (flame war on alt.religion.emacs)

Bottom line. REs are amazingly powerful and expressive,
but using them in applications can be amazingly complex and error-prone.



Pattern matching implementation: basic plan (revised)

Overview is similar to KMP.
* No backup in text input stream.

* Quadratic-time guarantee (linear-time typical).

Ken Thompson
Turing Award '83

Underlying abstraction. Nondeterministic finite state automata (NFA).

Basic plan. [apply Kleene's theorem]
* Build NFA from RE.
e Simulate NFA with text as input.

text
NFA for pattern

AAAABD '# (A*B|AC)D

Q. What exactly is an NFA?

y

&jecy

pattern
matches text

pattern does not

match text

Pattern matching implementation: basic plan (first attempt)

Overview is the same as for KMP.
* No backup in text input stream.

* Linear-time guarantee.

Ken Thompson
Turing Award '83

Underlying abstraction. Deterministic finite state automata (DFA).

Basic plan. [apply Kleene's theorem]
* Build DFA from RE.
 Simulate DFA with text as input.

pattern

x
accep matches text

text
DFA for pattern

AAAABD |mmms (n.p|ac)D ejecy

pattern does not
match text

Bad news. Basic plan is infeasible (DFA may have exponential number of states).

Duality

RE. Concise way to describe a set of strings.
DFA. Machine to recognize whether a given string is in a given seft.

Kleene's theorem.

* For any DFA, there exists a RE that describes the same set of strings.
* For any RE, there exists a DFA that recognizes the same set of strings.

0
—>
0% | (0%10%10%10%)* /‘ \
1
—®
number of 1's is a multiple of 3 C? 0\)

number of 1's is a multiple of 3

RE DFA

Good news. Basic plan works in theory.
Bad news. Basic plan fails in practice.



Nondeterministic finite-state automata

Regular-expression-matching NFA.

* RE enclosed in parentheses.

* One state per RE character (start = 0, accept = M).

* Red e-transition (change state, but don't scan input).

* Black match transition (change state and scan to next char).
* Accept if any sequence of transitions ends in accept state.

Nondeterminism.
* One view: machine can guess the proper sequence of state transitions.
* Another view: sequence is a proof that the machine accepts the text.

O~~~ O
accept state

NFA corresponding to the pattern ( ( A * B | AC) D)

Nondeterministic finite-state automata

Q. Is aaaaBp matched by NFA?
A. VYes, because some sequence of legal transitions ends in state 11.
[ even though some sequences end in wrong state or stall ]

A A A
0123234 ~__ o way out
/ of state 4
wrong guess if input is
A A A A B D
B
0—>1—>6—>7 ~__no way out
of state 7

O~ D~ D0
accept state

NFA corresponding to the pattern ( ( A * B | AC) D)

Nondeterministic finite-state automata

Q. Is aaaaBp matched by NFA?
A. Yes, because some sequence of legal transitions ends in state 11.

A A A A B D
0—>l->2/—>3—>2->3->2—>3-’2—>3—’4->5-'8—’9—’10 —-11

match transition: e-transition: accept state reached
scan to next input character change state and all text characters scanned:
and change state with no match pattern found

0

1

O—

O oMo oI OoR ol ooSy
accept state

NFA corresponding to the pattern ( ( A * B | AC) D)

Nondeterministic finite-state automata

Q. Is aaaac matched by NFA?
A. No, because no sequence of legal transitions ends in state 11.

[ but need to argue about all possible sequences ]

0

O—

1

A A A A C

0—>1—>2—>3—>2—>3—>2—>3—>2—>3—>4 ~__noway out
of state 4

O=oMoNo gICBET OB oy
accept state

NFA corresponding to the pattern ( ( A * B | AC) D)

20



Nondeterminism Partial proof of Kleene's theorem (RE = DFA)

Q. How to determine whether a string is matched by an automaton? For any RE, there exists a DFA that recognizes the same set of strings.
* Given an RE, construct an NFA (stay tuned)

DFA. Deterministic = exactly one applicable transition. * Givenan NFA, construct a DFA (see construction below)

NFA. Nondeterministic = can be several applicable transitions; 0 ERIETLE? @ DI e Feasg ied i i Bigiag2 a9 @ ghei WA

Feeeliclseletyhelnint e ne] * create a DFA state for every set of NFA states

* systematically infer transitions

Q. How to simulate NFA?

NFA
A. Systematically consider all possible transition sequences.

(15—
&

@_' 5@) GQA)_'é)_'SQD_'q@)—'é_;H strings not containing BBA

accept state
. . N .
NFA corresponding to the patter ¢ ( A * B | A C ) D) Problem: N states in NFA = 2N states in DFA

Insight: Need fo consider all possible transitions to simulate NFA

22

Pattern matching implementation: basic plan (revised)

Overview is similar to KMP.
* No backup in text input stream.

* Quadratic-time guarantee (linear-time typical).

Ken Thompson
Turing Award '83

Underlying abstraction. Nondeterministic finite state automata (NFA).

Basic plan. [apply Kleene's theorem]
* Build NFA from RE.

» Simulate NFA with text as input. » NFA simulation
pattern

x
ad‘eo matches text

text
NFA for pattern

AAAABD |mmm (asp|ac)D Fejecs

pattern does not
match text

Q. How to construct NFA and how to efficiently simulate NFA?



NFA representation

State names. Integers from 0 to M.

number of symbols in RE

Match-transitions. Keep regular expression in array re[].

e-transitions. Store in a digraph G.
e 0—1,1—2,1—>6, 2—3, 3—2, 3—4, 58, 8—9, 10—>11

0 | 5 /\

O~ EE~O~T_O—~0=0~0—~0;

accept state

NFA corresponding to the pattern ( ( A * B | AC) D)

NFA simulation

Q. How to efficiently simulate an NFA?
A. Maintain set of all possible states that NFA could be in
after reading in the first i text characters.

all states reachable
after reading i symbols

possible transitions on
reading (i+1)st symbolc  before reading next symbol  after reading i+1 symbols

possible null transitions

One step in simulating an NFA

all states reachable

NFA simulation example

0 1 2 3 4 6 : setof states reachable via e-transitions from start

3 7 : setof states reachable after matching A
0 1 2 b 4 5 6 b

2 3 4 7 : setof states reachable via e-transitions after matching A
0 1 5 6 7 8 9

&=o—0 @
3 : set of states reachable after matching A A

0 1 2 3 4 5 6 7 8 9

2 3 4 : set of states reachable via e-transitions after matching A A

0 1 Z()_K b

5 6 7 8 9

Simulationof ( ( A * B | AC) D) NFA forinput A A BD

10

10

10

10

10

Q. How to perform reachability?

NFA simulation example (continued)

2 3 4 : setof states reachable via e-transitions after matching A A

0 1 2 3 4 5 6 7 8 9 10

5 : set of states reachable after matching A A B
0 1 2 3 4 5 6 7 8 9 10

®—-0

5 8 9 : set of states reachable via e-transitions after matching A A B

0 1 2 3 4 5 6 7 8 9

10

10 : set of states reachable after matching A A B D
0 1 2 3 4 5 6 7 8

o=

10 11 : set of states reachable via e-transitions after matching A A B D
0 1 2 3 4 5 6 7 8 9 10

1

11

11

O—O
/

accept !

Simulationof ( ( A * B | AC) D ) NFA forinput A A B D

26
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Digraph reachability

Recall Section 4.2. Find all vertices reachable from a given set of vertices.

public class DirectedDFS

DirectedDFS (Digraph G, int s)

DirectedDFS (Digraph G,

Iterable<Integer> sources)

boolean marked(int v)

find vertices reachable from s

find vertices reachable from sources

is v reachable from source(s)?

NFA simulation: Java implementation

public boolean recognizes (String txt)
{
Bag<Integer> pc = new Bag<Integer>();
DirectedDFS dfs = new DirectedDFS (G, 0);
for (int v = 0; v < G.V(); v++)
if (dfs.marked(v)) pc.add(v);

for (int i = 0; i < txt.length(); i++)
{
Bag<Integer> match = new Bag<Integer>();
for (int v : pc)
{
if (v == M) continue;
if ((re[v] == txt.charAt(i)) || re[v
match.add (v+1) ;
}

dfs = new DirectedDFS (G, match) ;
pc = new Bag<Integer>();
for (int v = 0; v < G.V(); v++)
if (dfs.marked(v)) pc.add(v);
}

for (int v : pc)
if (v == M) return true;
return false;

L")

states reachable from
start by e-transitions

states reachable after
scanning past txt.charAt (i)

follow e-transitions

accept iff ends in state M

NFA simulation: Java implementation

public class NFA

{

// match transitions
// epsilon transitions
// number of states

private char[] re;
private Digraph G;
private int M;

public NFA(String regexp)
{

M = regexp.length() ;

re = regexp.toArray();

G = buildEpsilonTransitionsGraph() ;
}

public boolean recognizes(String txt)
{ /* see next slide */ '}

<«——— stay tuned

NFA simulation: analysis

30

Proposition. Determining whether an N-character text string is recognized by

the NFA corresponding to an M-character pattern takes time proportional to

M N in the worst case.

Pf. For each of the N text characters, we iterate through a set of states of

size no more than M and run DFS on the graph of e-transitions.

(The NFA construction we consider ensures the humber of edges in G < 3M.)

0

@_'l

TN

Do o0

accept state

NFA corresponding to thepattern ( ( A * B | AC) D)

32



Building an NFA corresponding to an RE

States. Include a state for each symbol in the RE, plus an accept state.

» NFA construction

Building an NFA corresponding to an RE

Concatenation. Add match-transition edge from state corresponding
to characters in the alphabet to next state.

Alphabet. a B c D
Metacharacters. () . * |

0 1 2 3 4 5 6 7 8 9 10 11
@@@—»@@—*@—»@@*@/
accept state
NFA corresponding to the pattern ( (A * B | AC) D)

0 1 2 3 4 5 6 7 8 9 10 11
© O ® OONCHONMOMNO, P
accept state
NFA corresponding to the pattern ( ( A * B | AC) D)

34

Building an NFA corresponding to an RE

Parentheses. Add e-transition edge from parentheses to next state.

0 1 2 3 4 5 6 7 8 9 10 11
O—0O—m—0 -0 O—>C)—>O—>O—>O—;
accept state
NFA corresponding to the pattern ( C A * B | AC) D)

36



Building an NFA corresponding to an RE

Closure. Add three e-transition edges for each * operator.

single-character closure closure expression

G.addEdge(i, i+1);

G.addEdge(i+1, i); G.addEdge(1p, i+1);

G.addEdge(i+1, 1p);

OO~ o)
accept state

NFA corresponding to the pattern ( ( A * B | AC) D)

NFA construction: implementation
Goal. Write a program to build the e-transition digraph.

Challenges. Need to remember left parentheses to implement closure and or;
also need to remember | to implement or.

Solution. Maintain a stack.

* (symbol: push ( onto stack.

* | symbol: push | onto stack.

* ) symbol: pop corresponding ( and possibly intervening |;
add e-transition edges for closure/or.

o /—\

S
accept state

NFA corresponding to the pattern ( ( A * B | AC) D)

Building an NFA corresponding to an RE

Or. Add two ¢-transition edges for each | operator.

or expression

G.addEdge(1p, or+l);
G.addEdge(or, 1i);

oO— @@%@%@7
ﬂCCCpt state

NFA corresponding to thepattern ( ( A * B | AC) D)

NFA construction: example

stack for
indices of 0
(sand |s @—'
(ops[1)
0
= 1
1 i
0 /
- 2
1
0
A 2 3

[or

@m

[orw

Building the NFA correspondingto ( ( A * B | AC) D )

38
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NFA construction: example

5 <:}_’
o :
5 (:>__>
1
0] 8
\_/'/_\CD_'
Lo} &
2 10
O—
PN

O—~®—>@—'O—'®—>O~O

Building the NFA correspondingto ( ( A * B | AC) D )

NFA construction: analysis

Proposition. Building the NFA corresponding to an M-character RE takes time

and space proportional to M.

Pf. For each of the M characters in the RE, we add at most three
e-transitions and execute at most two stack operations.

. TN

S
accept state

NFA corresponding to the pattern ( ( A * B | AC) D)

41
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NFA construction: Java implementation

private Digraph buildEpsilonTransitionGraph() {
Digraph G = new Digraph (M+1) ;
Stack<Integer> ops = new Stack<Integer>();
for (int i = 0; i < M; i++) {

int 1p = i;
if (re[i] == '(' || re[i] == '|') ops.push(i);
else if (re[i] == ')"') {

int or = ops.pop();

if (refor] == '|") {

1lp = ops.pop();
G.addEdge (1p, or+l);
G.addEdge (or, 1i);

}

else 1lp = or;

}

if (i < M-1 && re[i+l] == '*') {
G.addEdge (1p, i+1);
G.addEdge (i+1, 1lp);

}

if (re[i] == '(' || re[i] == '*' || re[i] == "'
G.addEdge (i, i+l);
}

return G;

)')

» applications

left parentheses and |

or

closure
(needs lookahead)

metasymbols

42
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Generalized regular expression print Typical grep application: crossword puzzles

Grep. Take a RE as a command-line argument and print the lines from
standard input having some substring that is matched by the RE.

public class GREP moy |
{ L
public static void main(String[] args) 2 -
String regexp = "(.*" + args[0] + ".*)"; T REasasubstring 3
= . R E
NFA nfa = new NFA(regexp); L also on booksite
while (StdIn.hasNextLine()) N

abalone
{ T

String line = StdIn.readLine();
if (nfa.recognizes(line))
StdOut.println(line) ;

abandon

} 3
}
B stricter
I u stricture

B
{ find lines containing uR .

c

T e

% grep 's..ict..' words.txt

constrictor

B I % more words.txt
TS

a '\
T aback dictionary
L|E (standard in Unix)
u abacus

Bottom line. Worst-case for grep (proportional o M N) is the same as for

elementary exact substring match.
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Industrial-strength grep implementation Regular expressions in other languages

To complete the implementation: Broadly applicable programmer's tool.

* Add character classes. * Originated in Unix in the 1970s.

* Handle metacharacters. * Many languages support extended regular expressions.

* Add capturing capabilities. * Built into grep, awk, emacs, Perl, PHP, Python, JavaScript.

 Extend the closure operator.
) P . Iy print all lines containing NEWLINE which
 Error CheCkmg and recovery. G iy occurs in any file with a . java extension

* Greedy vs. reluctant matching.

% egrep '“[qwertyuiop]*[zxcvbnm]*$' words.txt | egrep '........... '
typewritten

PERL. Practical Extraction and Report Language.
Ex. Which substring(s) should be matched by the RE <blink>.*</blink> ?

5 0 ) sI£ ltolg" i e cors replace all occurrences of from
er. = -1 -e s rom (o] input.

P P g P with to in the file input. txt

reluctant reluctant

<blink>text</blink>some text<blink>more text</blink> % perl -n -e 'print if /~[A-Z][A-Za-z]*$/' words.txt «—— printall words that start
T with uppercase letter

greedy
do for each line
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Regular expressions in Java

VCl“diTy checking. Does the input match the regexp?

Java sTring library. Use input.matches (regexp) for basic RE ma'rching.

public class Validate
{
public static void main(String[] args)
{
String regexp = args[0];
String input = args[l];
StdOut.println (input.matches (regexp)) ;
}
}
% java Validate "[$_A-Za-z][$_A-Za-z0-9]*" identl23 —

true

% java Validate "[a-z]+@([a-z]+\.)+(edu|com)" rs@cs.princeton.edu <—
true

% java Validate "[0-9]{3}-[0-9]{2}-[0-9]{4}" 166-11-4433 pa—
true

. legal Java identifier

valid email address

(simplified)

—— Social Security number

Harvesting information
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RE pattern matching is implemented in Java's pattern and Matcher classes.

import java.util.regex.Pattern;
import java.util.regex.Matcher;

public class Harvester

{
public static void main(String[] args)
{
String regexp = args[0];
In in = new In(args[1]);
String input = in.readAll();
Pattern pattern = Pattern.compile (x: )

Matcher matcher = pattern.matcher (input) ;

compile() creates a

Pattern (NFA) from RE

matcher () creates a

Matcher (NFA simulator)
/ from NFA and text

£ind () looks for

while (matcher.find())

{
StdOut.println (matcher.group()) ;

} ) \

the next match

\ group () returns
} the substring most

recently found by £ind ()

Harvesting information

Goal. Print all substrings of input that match a RE.

% java Harvester "gcg(cggl|agg)*ctg" chromosomeX.txt

gcgeggeggeggeggeggetg
gcgctg T
gcgetg harvest patterns from DNA

gcgeggeggeggaggeggaggeggetg

harvest links from website

|

% java Harvester "http://(\\w+\\.)* (\\w+)" http://www.cs.princeton.edu
http://www.princeton.edu

http://www.google.com

http://www.cs.princeton.edu/news

Algorithmic complexity attacks

Warning. Typical implementations do not guarantee performance!

Unix grep, Java, Perl

% java Validate "(alaa)*b" aaaaa aa aa aa 1.6 seconds
% java Validate " (alaa)*b" aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaac 3.7 seconds
% java Validate " (alaa)*b" aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaac 9.7 seconds
% java Validate " (alaa)*b" 23.2 seconds
% java Validate "(alaa)*b" aaaaa a a a aa 62.2 seconds
% java Validate "(alaa)*b" aaaaa a a a aaac 161.6 d

SpamAssassin regular expression.

% java RE "[a-z]+Q@[a-z]+([a-z\.]+\.)+[a-z]+" spammer@x..............c.ouuuu..

* Takes exponential time on pathological email addresses.
* Troublemaker can use such addresses to DOS a mail server.
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Not-so-regular expressions

Back-references.
* \1 notation matches sub-expression that was matched earlier.
* Supported by typical RE implementations.

% java Harvester "\b(.+)\1\b" words.txt
beriberi \

couscous word boundary

Some non-regular languages.

» Set of strings of the form ww for some string w: beriberi.

* Set of bitstrings with an equal number of Os and 1s: o1110100.
» Set of Watson-Crick complemented palindromes: atttcggaaat.

Remark. Pattern matching with back-references is intractable.

Summary of pattern-matching algorithms

Programmer.
* Implement substring search via DFA simulation.
* Implement RE pattern matching via NFA simulation.

Theoretician.

* RE is a compact description of a set of strings.

* NFA is an abstract machine equivalent in power to RE.
» DFAs and REs have limitations.

You. Practical application of core CS principles.

Example of essential paradigm in computer science.
* Build intermediate abstractions.

* Pick the right ones!

* Solve important practical problems.

Context

Abstract machines, languages, and nondeterminism.
* Basis of the theory of computation.

* Intensively studied since the 1930s.

* Basis of programming languages.

Compiler. A program that translates a program to machine code.
* KMP string = DFA.

« grep RE = NFA.

* javac Java language = Java byte code.

pattern string RE program

unnecessary check if legal check if legal
compiler output DFA NFA byte code
simulator DFA simulator NFA simulator JVM

54



