4.4 Shortest Paths

a1loys

B4
S

general

solve

l

Sec

Prog
cycles

& Weights= » edge-weighted digraph API
5 faigorithms » shortest-paths properti
= shortest-paths properties

3 All-pairs One

shortest-paths i -
. exg,ng.reaphsssgdge » Dijkstra's algorithm

S ok, » edge-weighted DAGs

g-algor lt(%lm » negative weights

ybrom

consider

use Single-source [d
networks =
Exer § 9‘

- x

Algorithms, 4" Edition : Robert Sedgewick and Kevin Wayne : Copyright © 2002-2010 - February 6, 2011 4:59:40 PM

Google maps

A e : i Hybri
2\ R : . | Map || Satelite || y:“ed |
. % “?% D \
0 Medical Center - 4 A P
e At Princeton ‘:m“"‘\m. ‘;& ! mﬂ“‘d\“ﬁ A %é»% Rainbridd® 2 '
et “ ‘ ‘ W
%7 e TR {:9 s "B ¢
G et Clay St~ Wwe 2 % 5
g e a e O\
2 -
\ ; G (
2 aoe Zﬁ:‘;‘:& Wﬂg (: -‘;;as‘!@“%, % %s, 28
>) Q X AN %,
perty % S ?’97; @ % 3 %ﬁ %
3\ 12\ 1
AR
&

v
‘,Ssﬁ) % % ‘m)- : ¢ % “Palmer Stadium-Princeton , IS
%o \ 2 University =) ke Dy
> A
%,
2 & N Princeton
;’ University-Main Campus
& o
& <
& %)
A

Sprngdale & {@2005 Google - Map data ®2005 NAVTEQ™ -Terms of Use

Continental U.S. routes (August 2010)

To Anchorage o 4:00 o Anchorage
Pacific ~, 5:00
Standard { Mountain
Time . Standard
Time
n
attle/y
PACIFIC acoma
Spokane Kali -
o r alispell/
OCEAN oMosps I _,GIacnerNatl. Park
= Great
land Pascoo " oMissoula CFalls
Helena O
gene
North Bel 2
Redmond Bozeman © OBillings
edford ise oCody
Crescceln %Klamath Falls 3 Gillette
Idaho © oJackson Hole L
Eurel Falls pid City ©
Al
Redding Casper
To Honolulu pack
Chico FE=C
Santa oReno Salt L
o sacraffento ¥,
acraiien teambaat
Franci Oakland Springs
ol o Modesto gle/Vail/Beaver Creek/ =
“"AspenValley
Monte ““Grand® Asp
Fresnoo “““Junction
o Montrose/,
oSt Geg Telluride
San Luis Obispor, BakergfiEId o Inyokern P urango
Santa Mal L7
santa vl
Burbank
2 ario { Flagstaff,
To Honolulu 2 alprSprings
) & " prescott lbuguerq
To Kahului Ee" C / Phgefix/
El e al ttsd
San Diego” o
To Honolulu Jo
2 Yum
i uc:
i Midlan
Train Routes —=zamrrax =
Codeshare/OnePass Service 2
b ------ OnePass Eligible Service S
= Domestic Routes Continental j2
Q\ X irlines
3 i Continental Route 8/10

Future Service

Seasonal Service

Time Zone Boundary
Continental/Continental Express/
Continental Connection Destination
Selected Airline Partner Destination
(For a complete list of airline partners,
see page 78.)

ATLANTIC
OCEAN

7:00
Eastern Standard Time

6008 7:00
i 1] Eastern
Standa Standard

ime
K !
il
Traverse
Wausau City
Appleto Bui
= ZinaW)
Rapids .
i [
2 Madison
Chicago, =
o /i (0’Hare) ith P Al _r
Rg;?;;/ oMuline» dend - o=
'eoria© 7 : o
......... Springfield o/ ;. ”|;oli I 1y
JRRRL g e Lk ! 1
44444444444 Kans: st isitte AL
N Louis b
Wichita - A f
o[Spri) o ¢
Kndkville !
\ shyillé cl
€) o s)
o at| 9
Ph vill luipbia;
ittle 3
tla)
- \ rlg
am X
o §
Ja (
n g ; q
- obil i " A
ouge i o
usti ’
. N
_ Ciudad Acuii
San Antonio ("te! L
oria 2 o 3501
Corpus J
ChrEI‘sti Fort.
Laredo/
Nuevo Larg GULF OF
McAllen/
&y MEXICO
fiaringsn nsville/
amoros

o @ow

-
1By
Presque
. Isle
Harl
Augustao R
urlington
land
M ester
an) i
annis
= lantucket
rtfe
w7 o n
County
es-Barre < Island MacArthur
lew York (LaGuardia)
ul = lew York|(John F. Kennedy)
e York (Newark/Liberty)
ad 2
g ATLANTIC
) | OCEAN
/ od M, &
©
is| rt
g {orfolk
o,
le] Sheen
)
o
-ayettevi
rlotté v onti
Wil
/Flgfenc
eacl
on
He; ind
annal
e
h
\I"val reasure Ca)
3 & larsh Hafbour
Eleuthera
udert i rnors Harbour
= ight
) jas: B
ros
n
West

http://www.continental.com/web/en-US/content/travel/routes

Shortest outgoing routes on the Internet from Lumeta headquarters

Verizon group
AT&T group
Qwest group
Cable companies \ 5
Other backbones ' SR N (AR @LUMETA®
oth e r - S ————

map by Lumeta Corporation, March 8, 2006

Shortest paths in a weighted digraph

Given an edge-weighted digraph, find the shortest (directed) path from s fo z.

edge-weighted digraph
4->5 0.35
5->4 0.35 (D—
4->7 0.37 ‘\QD/
5->7 0.28 ‘—(:)
7->5 0.28 /@7
5->1 0.32 ‘%
0->4 0.38 - 0
0->2 0.26
]7-'>§ g . ;’g shortest path from 0 to 6
-> .
2->7 0.34 g:j 8'32
6->2 0.40 225 0 39
3->6 0.52 3 e 0.5
6->0 0.58]
6->4 0.93

Shortest path variants

Which vertices?
* Source-sink: from one vertex fo another.
* Single source: from one vertex to every other.

* All pairs: between all pairs of vertices.

Restrictions on edge weights?
* Nonnegative weights.

e Arbitrary weights.
 Euclidean weights.

Cycles?

* No cycles.
* No "negative cycles."

Simplifying assumption. There exists a shortest path from s to each vertex v.

Shortest path applications

e Map routing.

* Robot navigation.

e Texture mapping.

e Typesetting in TeX.

* Urban traffic planning.

» Optimal pipelining of VLSI chip.

» Telemarketer operator scheduling.

e Subroutine in advanced algorithms.

* Routing of telecommunications messages.

» Approximating piecewise linear functions.

* Network routing protocols (OSPF, BGP, RIP).

» Exploiting arbitrage opportunities in currency exchange.
» Optimal truck routing through given traffic congestion pattern.

Reference: Network Flows: Theory, Algorithms, and Applications, R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Prentice Hall, 1993.

» edge-weighted digraph API

Weighted directed edge APT

public class DirectedEdge

DirectedEdge (int v, int w, double weight) weighted edge v—w

int from() vertex v

int to() vertex w
double weight() weight of this edge
String toString() string representation

weight

Idiom for processing an edge e: int v = e.from(), w = e.to();

Weighted directed edge: implementation in Java

Similar to Edge for undirected graphs, but a bit simpler.

public class DirectedEdge
{

private final int v, w;
private final double weight;

public DirectedEdge (int v, int w, double weight)
{

this.v
this.w

v/

w;
this.weight = weight;

public int from()

{ return v; }

public int to()
{ return w; }

public int weight()
{ return weight; }

| =

from() and to () replace
either () and other ()

10

Edge-weighted digraph API

public class

EdgeWeightedDigraph

void

Iterable<DirectedEdge>

int

int

Iterable<DirectedEdge>

String

EdgeWeightedDigraph (int V)

EdgeWeightedDigraph (In in)

addEdge (DirectedEdge e)

adj (int v)

V()

E()

edges ()

toString()

edge-weighted digraph with V vertices
edge-weighted digraph from input stream
add weighted directed edge e

edges adjacent from v

number of vertices

number of edges

all edges in this digraph

string representation

Conventions. Allow self-loops and parallel edges.

11

Edge-weighted digraph: adjacency-lists representation

tinyEWD. txt ~
V\"8 0(2].26 0(41.38
/E

v ~[11]3/.29

45 0.35 adj

54 0.35 0 /

A X / ag objects

75 0.28 2

51 0.32 . — ™3]6].52 reference to a
04 0.38 3 Di recéc.edEdge

4 object

02 0.26 >[4 7].37}=]4]5].35 !
73 0.39 5 \

13 0.29

27 0.34 o ~[5[1[.32{5[7].28}{5[4].35
6 2 0.40 7

36 0.52 <

60 0.58 614/.93 6|10|.58 6|2].40
6 4 0.93

~7131/.39 7151.28

Edge-weighted digraph: adjacency-lists implementation in Java

Same as EdgeWeightedGraph except replace Graph with pDigraph.

public class EdgeWeightedDigraph

{

private final int V;
private final Bag<Edge>[] adj;

public EdgeWeightedDigraph (int V)
{
this.V = V;
adj = (Bag<DirectedEdge>[]) new Bag|[V];
for (int v = 0; v < V; v++)
adj[v] = new Bag<DirectedEdge>() ;

public void addEdge (DirectedEdge e)
{

int v = e.from() ;

adj[v] .add(e) ; <

public Iterable<DirectedEdge> adj(int v)
{ return adj[v]; }

similar to edge-weighted
—— undirected graph, but only
add edge to Vv's adjacency list

13

Single-source shortest paths APT
Goal. Find the shortest path from s to every other vertex.

public class SP

SP (EdgeWeightedDigraph G, int s) shortest paths from s in graph G

double distTo(int v) length of shortest path from s to v
Iterable <DirectedEdge> pathTo(int v) shortest path from s to v
boolean hasPathTo (int v) is there a path from s to v?

SP sp = new SP(G, s);
for (int v = 0; v < G.V(); v++)
{
StdOut.printf ("%d to %d (%.2f): ", s, v, sp.distTo(v));
for (DirectedEdge e : sp.pathTo(v))
StdOut.print(e + " "),
StdOut.println() ;

14

Single-source shortest paths APT

Goal. Find the shortest path from s to every other vertex.

public class

SP

double

Iterable <DirectedEdge>

O O O O O O O O o

boolean

java SP
(0.
(1.

to O
to 1
to 2
to
to
to
to
to

g o0 oo W

(0

(0.

(0

(0.
(1.
(0.

SP (EdgeWeightedDigraph G, int s) shortest paths from s in graph G

distTo (int v)

pathTo (int v)

hasPathTo (int v)

tinyEWD.txt O
00) :

05):
.26) :
99):
.38):
73) :
51) :
60) :

0->4
0->2
0->2
0->4
0->4
0->2
0->2

o O O O O o o

.38
.26
.26
.38
.38
.26
.26

4->5
2->7
2->7

.35

.34

.35

.34
.34

length of shortest path from s to v
shortest path from s to v

is there a path from s to v?

5->1 0.32

7->3 0.39

7->3 0.39 3->6 0.52

15

» shortest-paths properties

16

Data structures for single-source shortest paths
Goal. Find the shortest path from s to every other vertex.

Observation. A shortest path tree (SPT) solution exists. Why?

Consequence. Can represent the SPT with two vertex-indexed arrays:

* distTo[v] iS length of shortest path from s to v.
* edgeTo[v] is last edge on shortest path from s to v.

edgeTo[] distTo[]
0 11 0
0 9 1 r5“j>1 1.05
o o 2 0->2 0.26
3 7->3 0.97
0 e 4 O—i4 0.38
5 4->5 0.73
o @ 6 3-26 1.49
7 2->7 0.60

shortest path tree from 0

17

Data structures for single-source shortest paths
Goal. Find the shortest path from s to every other vertex.
Observation. A shortest path tree (SPT) solution exists. Why?

Consequence. Can represent the SPT with two vertex-indexed arrays:
* distTo[v] iS length of shortest path from s to v.
* edgeTo[v] is last edge on shortest path from s to v.

public double distTo(int v)

{ return distTo[v]; }

public Iterable<DirectedEdge> pathTo (int v)
{
Stack<DirectedEdge> path = new Stack<DirectedEdge>() ;
for (DirectedEdge e = edgeTo[v]; e !'= null; e = edgeTo[e.from()])
path.push(e) ;

return path;

18

Edge relaxation

Relax edge e = v—w.

* distTo[v] is length of shortest known path from s fo v.

* distTo[w] iS length of shortest known path from s to w.

* edgeTo[w] iS last edge on shortest known path from s to w.
* If e = v—w gives shorter path to w through v, update distTo[w] and edgeTo[w].

v->w successfully relaxes
distTo[Vv]

4
3.1

<<: O/ /Weightofv—>w is1.3

private void relax(DirectedEdge e)

@72 (

black edges C)////(§> int v = e.from(), w = e.to();
are in edgeTo[] d‘StTo[W] if (distTo[w] > distTo[v] + e.weight())
{

3.1 distTo[w]
dgeT
((OSO/ —CdgeTolw] edgeTo [w]

distTo[v] + e.weight()
e;

E/i @ 4.4

Shortest-paths optimality conditions

Proposition. Let G be an edge-weighted digraph.
Then distTo[] are the shortest path distances from s iff:
* For each vertex v, distTo[v] is the length of some path from s to v.

* For each edge ¢ =v—w, distTo[w] < distTo[v] + e.weight().

Pf. < [necessary]

e Suppose that distTo[w] > distTo[v] + e.weight() for some edge e = v—w.
* Then, e gives a path from s to w (through v) of length less than distTo[w].

distTo[Vv]

y'4

3.1

<<O\>O/ /Weight of v->wis1.3

@72

(/j./r distTo[w]

20

Shortest-paths optimality conditions

Proposition. Let G be an edge-weighted digraph.
Then distTo[] are the shortest path distances from s iff:
* For each vertex v, distTo[v] is the length of some path from s to v.

* For each edge ¢ =v—w, distTo[w] < distTo[v] + e.weight().

Pf. = [sufficient]
* Suppose that s =vp— vi—v2— ... > v =w is a shortest path from s to w.

e Then, distTo[vi] <= distTo[vi.i] + ex.weight ()

distTo[vk.1] = distTo[vik.2] + ex.1.weight() e =it edge on shortest
path from s tow

distTo[v1] = distTo[wvo] + e;.weight ()

 Collapsing these inequalities and eliminate distTo[v,] = distTo[s] = O:

distTo[w] = distTo[vk] =< ex.weight() + ex-i.weight() + .. + ei.weight()

\

weight of some path from s to w weight of shortest path from s to w

e Thus, distTo[w] is the weight of shortest path fo w. =

21

Generic shortest-paths algorithm

Generic algorithm (to compute SPT from s)

Initialize distTo[s] = 0 and distTo[v] = « for all other vertices.

Repeat until optimality conditions are satisfied:
- Relax any edge.

Proposition. Generic algorithm computes SPT from s. <—— assuming SPT exists

Pf sketch.

e Throughout algorithm, distTo[v] is the length of a simple path from s to v
and edgeTo[v] is last edge on path.

» Each successful relaxation decreases distTo[v] for some v.

* The entry distTo[v] can decrease at most a finite number of times. =

22

Generic shortest-paths algorithm

Generic algorithm (to compute SPT from s)

Initialize distTo[s] = 0 and distTo[v] = « for all other vertices.

Repeat until optimality conditions are satisfied:
- Relax any edge.

Efficient implementations. How to choose which edge to relax?
Ex 1. Dijkstra's algorithm (nonnegative weights).

Ex 2. Topological sort algorithm (no directed cycles).

Ex 3. Bellman-Ford algorithm (no negative cycles).

23

» Dijkstra's algorithm

24

Edsger W. Dijkstra: select quotes

“ Do only what only you can do. ”

“ In their capacity as a tool, computers will be but a ripple on the
surface of our culture. In their capacity as intellectual challenge,
they are without precedent in the cultural history of mankind. ”

“The use of COBOL cripples the mind, its teaching should,

»

therefore, be regarded as a criminal offence.

“ It is practically impossible to teach good programming to
students that have had a prior exposure to BASIC: as potential
programmers they are mentally mutilated beyond hope of
regeneration. ”’

“APL is a mistake, carried through to perfection. It is the
language of the future for the programming techniques
of the past: it creates a new generation of coding bums. ”

k TR ..

Turing award 1972

Edsger W. Dijkstra

25

Edsger W. Dijkstra:

select quotes

&

il

"Object-orie
is an exceptionall
which could on
originated in Cali
-- Edsger Dijkstr

26

4->5
5->4
4->7
5->7
7->5
5->1
0->4
0->2
7->3
1->3
2->7
6->2
3->6
6->0
6->4

Dijkstra's algorithm

QOO OO OO ODODOOOOOOoO

Consider vertices in increasing order of distance from s

(non-tree vertex with the lowest daistTo[] value).

Add vertex to tree and relax all edges incident from that vertex.

.35
.35
.37
.28
.28
.32

38

.26
.39
229
.34
.40
.52

58

.93

S o o W N B O

distTo[v]
0.00

edgeTo [v]

27

Dijkstra's algorithm visualization

28

Dijkstra's algorithm visualization

29

Shortest path trees
 Consider vertices in increasing order of distance from s

(non-tree vertex with the lowest daistTo[] value).
* Add vertex to tree and relax all edges incident from that vertex.

25% 50% 100%

30

Dijkstra's algorithm: correctness proof

Proposition. Dijkstra's algorithm computes SPT in any edge-weighted digraph
with nonnegative weights.

Pf.

* Each edge ¢ = v—w is relaxed exactly once (when v is relaxed),
leaving distTo[w] < distTo[v] + e.weight().

* Inequality holds until algorithm terminates because:
- distTo[w] cannot increase «—— distro[] values are monotone decreasing

- distTo|[v] will not change <«—— edge weights are nonnegative and we choose
lowest distTo[] value at each step

* Thus, upon termination, shortest-paths optimality conditions hold. =

31

Dijkstra's algorithm: Java implementation

public class DijkstraSP

{
private DirectedEdge[] edgeTo;
private double[] distTo;
private IndexMinPQ<Double> pq;

public DijkstraSP (EdgeWeightedDigraph G, int s)
{

edgeTo = new DirectedEdge[G.V()];

distTo = new double[G.V ()]

P9 = new IndexMinPQ<Double>(G.V()) ;

for (int v = 0; v < G.V(); v++)
distTo[v] = Double.POSITIVE INFINITY;
distTo[s] = 0.0;

pg.insert(s, 0.0);
while ('pg.isEmpty())
{

relax vertices in order
of distance from s

A

int v = pg.delMin() ;
for (DirectedEdge e : G.adj(v))
relax(e) ;

Dijkstra's algorithm: Java implementation

private void relax(DirectedEdge e)

{

int v = e.from(), w = e.to() ;
if (distTo[w] > distTo[v] + e.weight())

{

distTo[w] = distTo[v] + e.weight()

edgeTo[w] = e;

if (pg.contains(w)) pg.decreaseKey(w, distTo[w]) ;
else pPg.insert (w, distTo([w])

update PQ

33

Dijkstra's algorithm: which priority queue?

Depends on PQ implementation: 7 insert, I delete-min, E decrease-key.

1 \Y% 1 V2

array

binary heap log V log V log V ElogV

d-way heap

loga V loga V logd V El Vv
(Johnson 1975) d logd d logd 0gd 0g E/v

Fibonacci heap

1t logVt 1t E+VliogV
(Fredman-Tarjan 1984) °9 °9

f amortized

Bottom line.

* Array implementation optimal for dense graphs.

 Binary heap much faster for sparse graphs.

 d-way heap worth the trouble in performance-critical situations.
» Fibonacci heap best in theory, but not worth implementing.

34

Priority-first search

Insight. Four of our graph-search methods are the same algorithm!
* Maintain a set of explored vertices S.

* Grow S by exploring edges with exactly one endpoint leaving S.

DFS. Take edge from vertex which was discovered most recently.
BFS. Take edge from vertex which was discovered least recently.
Prim. Take edge of minimum weight.

Dijkstra. Take edge to vertex that is closest to S.

Challenge. Express this insight in reusable Java code.

35

» edge-weighted DAGs

36

Acyclic edge-weighted digraphs

Q. Suppose that an edge-weighted digraph has no directed cycles.

Is it easier to find shortest paths than in a general digraph?

A. Yesl!

5->4
4->7
5->7
5->1
4->0
0->2
3->7
1->3
7->2
6->2
3->6
6->0
6->4

OO OO OO OOOOOo oo

.35
.37
.28
.32
.38
.26
.39
.29
.34
.40
.52
.58
.93

source

s
O—0)
e
Q
@
() 0

37

Shortest paths in edge-weighted DAGs

Topological sort algorithm.
» Consider vertices in topologically order.
* Relax all edges incident from vertex.

topological order: 51364702

Shortest paths in edge-weighted DAGs

public class AcyclicSP

{
private DirectedEdge|[] edgeTo;

private double[] distTo;

public AcyclicSP (EdgeWeightedDigraph G, int s)

{
edgeTo = new DirectedEdge[G.V()];

distTo = new double[G.V()];

for (int v = 0; v < G.V(); v++)
distTo[v] = Double. POSITIVE_INFINITY;
distTo[s] = 0.0;

Topological topological = new Topological (G) ;

for (int v : topological.order())
for (DirectedEdge e : G.adj(v))
relax(e) ;

——

topological order

39

Shortest paths in edge-weighted DAGs

Topological sort algorithm.
» Consider vertices in topologically order.
* Relax all edges incident from vertex.

Proposition. Topological sort algorithm computes SPT in any edge-weighted
DAG in time proportional to £+ V.

Pf.
* Each edge e = v—w is relaxed exactly once (when v is relaxed),
leaving distTo[w] < distTo[v] + e.weight().
* Inequality holds until algorithm terminates because:
- distTo[w] cannhot increase <«——— distTo[] values are monotone decreasing
- distTo([v] will not change <«—— Dbecause of topological order, no edge pointing to v

will be relaxed after v is relaxed

* Thus, upon termination, shortest-paths optimality conditions hold. =

40

Longest paths in edge-weighted DAGs

Formulate as a shortest paths problem in edge-weighted DAGs.
* Negate all weights.
* Find shortest paths.

equivalent: reverse sense of equality in relax()

A

* Negate weights in resulft.

longest paths input shortest paths input
5->4 0.35 5->4 -0.35
4->7 0.37 4->7 -0.37
5->7 0.28 5->7 -0.28
5->1 0.32 5->1 -0.32
4->0 0.38 4->0 -0.38
0->2 0.26 0->2 -0.26
3->7 0.39 3->7 -0.39
1->3 0.29 1->3 -0.29
7->2 0.34 7->2 -0.34
6->2 0.40 6->2 -0.40
3->6 0.52 3->6 -0.52
6->0 0.58 6->0 -0.58
6->4 0.93 6->4 -0.93

Key point. Topological sort algorithm works even with negative edge weights.

Longest paths in edge-weighted DAGs: application

Parallel job scheduling. Given a set of jobs with durations and precedence
constraints, schedule the jobs (by finding a start time for each) so as to
achieve the minimum completion time while respecting the constraints.

job duration must complete

before
0 41.0 1 7 9
1 51.0 2
2 50.0
3 36.0
4 38.0
5 45.0 !
6 21.0 3 8 ! 3
7 32.0 3 8 0 2 6 8 2
8 32.0 2 > 4
9 29.0 4 6 | | T | I |

Parallel job scheduling solution

42

Critical path method

CPM. To solve a parallel job-scheduling problem, create acyclic edge-weighted

digraph:
o c . . must complete
 Source and sink vertices. e
. . . 0 410 1 7 9
» Two vertices (begin and end) for each job. B
. 2 50.0
* Three edges for each job. 3 360
. . . 4 38.0
- begin to end (weighted by duration) c ac o
- source to begin (0 weight) 6 2.0 38
7 320 3 8
- end to sink (O weight) S el
9 29.0 4 6
job start job finish precedence constraint
N\ " e 4"@ 51 > _— (zero weight)
dur&Ition \ @ 2, > @ 32 ro— :
21)< 36
O @—> - @ =
: 29 e Q
N C 38
: 45

Critical path method

CPM. Use longest path from the source to schedule each job.

0 41 70 91 123 173

Parallel job scheduling solution

@ 41 %@ 2L >

P] 32 32 /r@>;0>
duration \@—> / \

critical path
C 21 / : 36
\C 38

45

44

Deep water

Deadlines. Add extra constraints to the parallel job-scheduling problem.
Ex. "Job 2 must start no later than 12 time units after job 4 starts.”

Consequences.
 Corresponding shortest-paths problem has cycles (and negative weights).
e Possibility of infeasible problem (negative cycles).

45

» negative weights

46

Shortest paths with negative weights: failed attempts

Dijkstra. Doesn't work with negative edge weights.

@)_4

2

But shortest path from 0 to 3 is 0—-1—-2—3.
Y
% -9

Re-weighting. Add a constant to every edge weight doesn't work.

13 ~
0 ,@
Adding 9 to each edge weight changes the

11 15 shortest path from 0—-1—-2—3 to 0—3.

Y

3)e 0 @

Bad news. Need a different algorithm.

2 Dijkstra selects vertex 3 immediately after 0.

47

Negative cycles

Def. A negative cycle is a directed cycle whose sum of edge weights is negative.

digraph
4->5
5->4
4->7
5->7
7->5
5->1
0->4
0->2
7->3
1->3
2->7
6->2
3->6
6->0
6->4

OO O OO OO OOOO0O OO O oo

.35
.66
.37
.28
.28
.32
.38
.26
.39
.29
.34
.40
.52
.58
.93

Ge
IS OR6
W S ®

(3 0

negative cycle (-0.66 + 0.37 + 0.28)
5->4->7->5

shortest path from 0 to 6
0->4->7->5->4->7->5...->1->3->6

Proposition. A SPT exists iff no negative cycles.

assuming all vertices reachable from s

48

Shortest paths with negative weights: dynamic programming algorithm

Dynamic programming algorithm

Initialize distTo[s] = 0 and distTo[v] = « for all other vertices.

Repeat V times:
- Relax each edge.

for (int i = 1; i <= G.V(); i++)
for (int v = 0; v < G.V(); v++)

for (DirectedEdge e : G.adj(v)) -« phase i (relax each edge)

relax(e) ;

Proposition. Dynamic programming algorithm computes SPT in any edge-
weighted digraph with no negative cycles in time proportional to £ x V.
Pf idea. After phase i, found shortest path containing at most i edges.

49

Bellman-Ford algorithm

Observation. If distTo[v] does not change during phase i,

no need fo relax any edge incident from v in phase i +1.

FIFO implementation. Maintain queue of vertices whose distTo[] changed.

I

be careful to keep at most one copy
of each vertex on queue (why?)

Overall effect.
e The running time is still proportional to £ x V' in worst case.
e But much faster than that in practice.

50

Bellman-Ford algorithm trace

q source

\ Y
: O—@
@ @@ @ 3 1->3
@ ®

queue vertices for

each phase are in red
’(edgeTo[]

edgeTo[]

<:> 6 3->6

edgeTo[]
0 6->0
2 6->2
4 6->4

black: next pass

VIO B

(Vo BN |

recolored edge

4:\

v ~

NOoO Vv WN RO

edgeTo[]

4->5

2->7

edgeTo[]

7->5

edgeTo[]
6->0

6->2
1->3
6->4
7->5
3->6
2->7

51

Bellman-Ford algorithm

public class BellmanFordSP

{
private double[] distTo;
private DirectedEdge[] edgeTo;
private int[] onQ;
private Queue<Integer> queue;

public BellmanFordSPT (EdgeWeightedDigraph G, int s)

{
distTo new double[G.V()];
edgeTo new DirectedEdge[G.V()]:;
onq = new int[G.V()];
queue new Queue<Integer>() ;

for (int v = 0; v < V; v++)

distTo[v] = Double.POSITIVE_ INFINITY;

distTo[s] = 0.0;

queue.enqueue (s) ;
while (!queue.isEmpty())
{
int v = queue.dequeue() ;
onQ[v] = false;
for (DirectedEdge e G.adj(v))
relax(e) ;

private void relax(Dire

{

A

queue of vertices whose

int v = e.from(), w
if (distTo[w] > dis

{

distTo[] value changes

.

edEdge e)

e.to();
o[v] + e.weight())

distTo[w] = distTo[v] + e.weight() ;
edgeTo[w] = e;
if ('onQ[w])
{
queue.enqueue (W) ;
onQ[w] = true;

52

Bellman-Ford algorithm visualization

edges on queue in red
phases

7

5
ZANBN

10

53

Single source shortest-paths implementation: cost summary

algorithm restriction typical case worst case extra space

no directed
topological sort
cycles
Dijkstra no negative E log V £ log V
(binary heap) weights g g
dynamic programming EV EV
no negative
cycles
Bellman-Ford E+V EV

Remark 1. Directed cycles make the problem harder.
Remark 2. Negative weights make the problem harder.
Remark 3. Negative cycles makes the problem intractable.

54

Finding a negative cycle

Negative cycle. Add two method to the APTI for sp.

boolean

Iterable <DirectedEdge>

hasNegativeCycle () is there a negative cycle?

negativeCycle () negative cycle reachable from s

digraph
4->5
5->4
4->7
5->7
7->5
5->1
0->4
0->2
7->3
1->3
2->7
6->2
3->6
6->0
6->4

OO O OO OO OO0OO OO O oo

.35
.66
.37
.28
.28
.32
.38
.26
.39
.29
.34
.40
.52
.58
.93

09
IS O
W S ®

(3 0

negative cycle (-0.66 + 0.37 + 0.28)
5->4->7->5

55

Finding a negative cycle

Observation. If there is a negative cycle, Bellman-Ford gets stuck in loop,
updating distTo[] and edgeTo[] entries of vertices in the cycle.

\ 4

edgeTo[v]

Proposition. If any vertex v is updated in phase V, there exists a negative

cycle (and can trace back edgeTo[v] entries to find it).

In practice. Check for negative cycles more frequently.

56

Negative cycle application: arbitrage detection

Problem. Given table of exchange rates, is there an arbitrage opportunity?

1.350

1.521

0.943

0.995

0.741

1.126

0.698

0.732

0.657 1.061 1.011
0.888 1.433 1.366
1 1.614 1.538
0.620 1 0.953
0.650 1.049 1

Ex. $1,000 = 741 Euros =

1,012.206 Canadian dollars = $1,007.14497.

T

1000 x 0.741 x 1.366 x 0.995 =1007.14497

57

Negative cycle application: arbitrage detection

Currency exchange graph.

e Vertex = currency.

* Edge = transaction, with weight equal to exchange rate.

* Find a directed cycle whose product of edge weights is > 1.

0.741 * 1.366 * .995 = 1.00714497

%Y

Challenge. Express as a negative cycle detection problem.

58

Negative cycle application: arbitrage detection

Model as a negative cycle detection problem by taking logs.

* Let weight of edge v—w be -In (exchange rate from currency v to w).
e Multiplication turns to addition; > 1 turns to <0.

 Find a directed cycle whose sum of edge weights is < 0 (negative cycle).

-1n(.741) -1Tn(1.366) -1n(.995)

oYy

.2998 - .3119 + .0050 = -.

Remark. Fastest algorithm is extraordinarily valuable!

59

Shortest paths summary

Dijkstra's algorithm.
* Nearly linear-time when weights are nonnegative.
* Generalization encompasses DFS, BFS, and Prim.

Acyclic edge-weighted digraphs.

* Arise in applications.

» Faster than Dijkstra's algorithm.
* Negative weights are no problem.

Negative weights and negative cycles.

* Arise in applications.

* If no negative cycles, can find shortest paths via Bellman-Ford.
 If negative cycles, can find one via Bellman-Ford.

Shortest-paths is a broadly useful problem-solving model.

60

