4.2 Directed Graphs

using Ex
5 (UPathDAGs
@ (. Strong
=7
2 =
use example 3.

connected topologlcal °'§

d|g t |rzcted .
D|gsre:aph gggne > d!graph API
seeedge st » digraph search
idirected© ~ EDFS » topological sort
graphs Exer
tug},gph » strong components

vertex
vertlcesmg

aindwo)

Algorithms, 4" Edition : Robert Sedgewick and Kevin Wayne : Copyright © 2002-2010 - February 6, 2011 4:39:59 PM

Directed graphs

Digraph. Set of vertices connected pairwise by directed edges.

vertex of
outdegree 3
and indegree 1

R
directed path @ o @ directed

from 0 to 2 ~— @ 9 / cycle
S:S 9

& m

Road network

Vertex = intersection; edge = one-way street.

- Collister St

|
d

&
>
NN

Encsson st —,

¢ A
—I= - Station|[1] 4
=S n)n[]_j_

2oBLY au) 10 AY

 ©2008 Google - Map data ©2008 Sanborn,

S YL 7z

i

v/
Canal St Stati

TEQ™ - Terms QP%SS" 7

Political blogosphere graph

Vertex = political blog; edge = link.

The Political Blogosphere and the 2004 U.S. Election: Divided They Blog, Adamic and Glance,
2005

Overnight interbank loan graph

Vertex = bank; edge = overnight loan.

The Topology of the Federal Funds Market, Bech and Atalay, 2008

Implication graph

Vertex = variable; edge = logical implication.

if x5 is true,
then x0 is true

Combinational circuit

Vertex = logical gate; edge = wire.

7>

ne

WordNet graph

Vertex = synset; edge = hypernym relationship.

event
happeningoccurrence occurrent natural_event
miracle
act human_action human_activity
change alteration modification miracle \
/ \ \ group_action
damage harm impairment transition increase forfeitforfeiture sacrlflce action
/ T resistance opposntlon transgressnon
leap jump saltation jumpleap
change
demotlon /r variation
motion movement move
locomotion travel descent
~N 171 run running jump parachuting
- dash sprint

http://wordnet.princeton.edu

The McChrystal Afghanistan PowerPoint slide

Crime and Narcotics
Coalition Forces & Actions
Physical Environment

Afghanistan Stability / COIN Dynamics L s | Y e
: :\;fogv:ar: i“s‘tea“nt Security Forces
M | Insurgents
.
u

ANSF & \\

[()Zoalitio:’ <<
)amage:

Casya Hes g — — v
2 ISR/ Open \

Source Opsﬂ—\ ecun!y /—“bTargele g “

OUTSIDE SUPPORT
TOINSURGENT o
Have&s I Ability to

FACTIONS
\
erate Er%ggfe?nem
of Ins.

< ANSE

Knowledge. i & Tactic :

& Undersi COIN orities &

of Social ANSF

Ins. Coordmatmn
" Unity - R'gg::‘l(u‘\’%& o ¢ % O'f)lenslves & A}r:no;\g ns. h!rsurgent

i i f + «——— Presence actions errain

peration Ski pline, Clear & Hold) L tnsurg; f"“é Advantage
e at & Pakistan) il

Strik
Caj aclty—;\ Ins, Damages
S [o} ~—a Fear of
¥ St~ VRPN Costlies B TARSF! \\
Coalition “‘

Coalition Policin & Repercussion

& Experlence Manrower

ofF p%o?'ch 3(' /& Morale Tramm R
to Fit
o Fit Afghan A ANS F etention,

ANSF -~ Tra
\ L '"é:;"cﬂ:z:'we““’"““INSTITUTIONAL " g " ><' INSURGENTS
Coalition Dev. 5:;" Capacl%_—//&)m‘ tion 4 . Sia ‘ Percelved EI:'rm‘ntnes& L l
BrSrone o b R. o L Policy porityiilg Use ongorce TiTaretd R Other Cmina Fundmﬂl NARCOTICS

Execution i
Experience &Aid F Execution &Affllnallon wi by In: Attacks on
PFer‘celved Population Progress/ Support
aimness Perceived up| Relati neirgents | Likelihood o
s Apd.g:;ﬂ:gy . ouRRRt p?,,?uf’:, g CrimelViolence
0 Y. ns. Support
> P Relative Gov’t & Coalitio Perception of ’ ﬁﬂl)eeﬂ"c for Paynesm

Popula 0 i
CAPACITY &Coal(-;-gnc‘mlmonmomeh" L s / W\ Sondin
'PRIORITIES Adv,‘m Alghan Method < POPU LATION "

)
CENTRAL i GOVERNMENT CONDITIONS i, fA e, %ﬁ:‘ézxs}"z e i

Insurgenls

ety Gov't& SF Insurgency/ |
SLIIJspEonfor GOV’T ;:If;;'c;?y"\CAPAC ITY Relauve &AmREIkIE FS R':::r’c(::fs{:)ns OPU LAR
~_ Poten

Operation
Ci Im actgovt Gov'tvs Ins
/ - Adequagy V! B i : Lt Anractlveness Terrain
US Domestic [Coalition G&vleuung '"sgarf"ro.'ﬂﬁ ' 1 SU PPORT fGovtvs. Harshness Duration|
Perceived S“PPO" Ve%{}x‘\%ma‘ﬁd V't Strucmres ég;l;(?:sohn Perception of. ‘ / e &Beeedth Op:rgtio
Cost/Benefit Hiri ,g Workforce Coalmon Intent 1
& Support Skill & Avail Commitment P&%SDHOR Fraction of
oV
™ US Domestic] Tra"s parency Strength X‘i."d”z’;:ﬁ?
Int] Strategic Govt Overall Govt Strength of & Intent Le itvs
Commun Pmcesses & Professionalism Roli eqitvs
P ostments Policy Quality Execuuon ldeo! ‘°“§
"COALITION Erdimess” _ capocity & Sibat '\ SaStacion
Se"“DOMESTlC '"VES{"‘&"‘ Stacyires Cyltural Erosio ili wi Gains in
isplacemen < Secumy Services
\G ; T RI BAL &Employment \1|snshle Gams
ov't/ n Securi
S CONACoR Ethnic/Tribal / o B Seour
SUPPORT - coer, ™\ GOVERNANC = SR ‘
Dev. Op Tribal Favoritisr Structures& %:ng?&lr?ns
Service < A"e’“%e L1
. onnectedness B
&A‘d of Populatio Perceived A
i &

%

Infr, Services, Econ ‘
olicy & Execution e

P
IPerceived Fairness

\

l

WORKING DRAFT - V3

I'.)A(onsulting
Group
Page 22

©PA Knowledqe Limited 2009
http:/ /www.guardian.co.uk/news/datablog/2010/apr/29/mcchrystal-afghanistan-powerpoint-slide

Digraph applications

transportation street intersection one-way street
web web page hyperlink
food web species predator-prey relationship
WordNet synset hypernym
scheduling task precedence constraint
financial bank transaction
cell phone person placed call
infectious disease person infection
game board position legal move
citation journal article citation
object graph object pointer
inheritance hierarchy class inherits from
control flow code block jump

10

Some digraph problems

Path. Is there a directed path from s to ¢?

Shortest path. What is the shortest directed path from s to ¢?

Topological sort. Can you draw the digraph so that all edges point upwards?
Strong connectivity. Is there a directed path between all pairs of vertices?
Transitive closure. For which vertices v and w is there a path from v to w ?

PageRank. What is the importance of a web page?

11

» digraph API

12

Digraph APT

public class Digraph

Digraph (int V) create an empty digraph with V vertices
Digraph (In in) create a digraph from input stream
void addEdge (int v, int w) add a directed edge v—w
Iterable<Integer> adj(int v) vertices adjacent from v
int V() number of vertices
int E() number of edges
Digraph reverse () reverse of this digraph
String toString() string representation
In in = new In(args[0]); read digraph from
Digraph G = new Digraph (in) ; =1 input stream

for (int v = 0; v < G.V(); v++) .
) _ print out each
for (int w : G.adj(v)) 1 edge (once)
StdOut.println(v + "->" + w);

Digraph APT

tinyDG. txt
Vg3 : % java TestDigraph tinyDG.txt
22 <« 0->5
4 2
3 2 2->0
6 0
0 1 @e 2->3
2 0 ©)»6 3->5
11 12 _
9 10 (4) 4->2
9 11 ->4
O 1) 5
10 12 6->9
11 4 6->4
4 3
7 8
8 7
5 4 11->4
0 5 11->12
6 4 -
: o 12-9
7 6
In in = new In(args[0]); read digraph from
- - - b_ 1
Digraph G = new Digraph (in) ; Input stream
for (J.nt.v =0; v < C-;.V(); v++) S
for (int w : G.adj(v)) D edge (once)
StdOut.println(v + "->" + w);

14

Adjacency-list digraph representation

Maintain vertex-indexed array of lists (use Bag abstraction).

adj[

]

© 00 N O ui A W N R O

=
o

=
'_\

=
N

77T TN

5 1
0 3
5 2
3 2
4

9 4
6 8
7 9
1110
12

4 {12

15

Adjacency-lists digraph representation: Java implementation
Same as Graph, but only insert one copy of each edge.

public class Digraph
{

private final int V;
private final Bag<Integer>[] adj; <«—+— adjacency lists

public Digraph (int V)
{ create empty graph
this.V = V; with V vertices

adj = (Bag<Integer>[]) new Bag[V];
for (int v = 0; v < V; v++)
adj[v] = new Bag<Integer>() ;

public void addEdge (int v, int w)
{ adj[v].add(w); }

<«—— add edge from v tow

public Iterable<Integer> adj(int v) iterator for vertices
{ return adj[v]; } adjacent from v

16

Digraph representations

In practice. Use adjacency-list representation.

 Algorithms based on iterating over vertices adjacent from v.
 Real-world digraphs tend to be sparse.

\ huge number of vertices,
small average vertex degree

: insert edge edge from iterate over vertices
representation ,
fromvtow v to w? adjacent from v?
list of edges E 1 E E
adjacency matrix V2 1t 1 \Y
adjacency list E+V 1 outdegree(v) outdegree(v)

t disallows parallel edges

» digraph search

18

Reachability

Problem. Find all vertices reachable from s along a directed path.

o— - @ = - »@
: NN
Y
.—>I< ® >0 >~0< 6=« ¢ >0O
A A A A
Y Y
o< 0<0< 0 >o
+ A A A
\ Y Y
’4 B >’ >’ »>0—>0 >0
Y Y Y Y
o> 0O« +< 14 ’ >‘<—’—>‘
\ Y Y
<0 >0 >0 <0 > >Q—>@
A A A
Y Y Y
¢—>O—>+< r >’ >‘<—’<—6
Y Y
I—»b—»t«—‘—»‘ <@

19

Depth-first search in digraphs

Same method as for undirected graphs.

» Every undirected graph is a digraph (with edges in both directions).
* DFS is a digraph algorithm.

0
DFS (to visit a vertex v) Q

Mark v as visited. @

Recursively visit all unmarked

vertices w adjacent from v. V ; \ !

20

Depth-first search (in undirected graphs)

Recall code for undirected graphs.

public class DepthFirstSearch
{

private boolean[] marked;

public DepthFirstSearch (Graph G, int s)
{

marked = new boolean[G.V ()],

dfs (G, s);

private void dfs(Graph G, int v)
{
marked[v] = true;
for (int w : G.adj(v))
if ('marked[w]) dfs (G, w);

public boolean marked(int v)
{ return marked[v]; }

true if path to s

constructor marks
vertices connected to s

recursive DFS does the work

client can ask whether any
vertex is connected to s

21

Depth-first search (in directed graphs)

Digraph version identical to undirected one (substitute pigraph for Graph).

public class DirectedDFS
{

private boolean[] marked;

public DirectedDFS (Digraph G, int s)
{

marked = new boolean[G.V ()],

dfs (G, s);

private void dfs(Digraph G, int v)
{
marked[v] = true;
for (int w : G.adj(v))
if ('marked[w]) dfs (G, w);

public boolean marked(int v)
{ return marked[v]; }

true if path from s

constructor marks
vertices reachable from s

recursive DFS does the work

client can ask whether any
vertex is reachable from s

22

Reachability application: program control-flow analysis

Every program is a digraph.

» Vertex = basic block of instructions (straight-line program).

» Edge = jump.

Dead-code elimination.
Find (and remove) unreachable code.

Infinite-loop detection.
Determine whether exit is unreachable.

42 <=

11121314110

1121314110

16: t5<= 1214

30:13<=13 :

121314110

12131516 110111 nesuso

18: t8<= t5
32: 7<= 16
11213141518 110
121357110111
1213151611011 20: 9<= 18
34: <= 17
1121314519110
11121315110 t11
22: <= 19
36: <=

1112131415110
ti2etson

28 t6<= 15 24: t11<=14

2350t

121315110111
1121310111 \\\\\1

40: <= 1114 26 <

11121314 110 \ 1213110111

38: 4 <= t11

2:13<=
301
\J
4:td<=
1B3t4ron
\
6:tl<=10
_—
13
\
8:<=1t1t4
tidn
\
10: 2<=n1
12t314
\J

12: 110 <=

121314110

14: <=

3110
3110

44: 10 <= 110

310

46: <= t3

o

48: 10 <= r1r0

23

Reachability application: mark-sweep garbage collector
Every data structure is a digraph.

e Vertex = object.

* Edge = reference.

Roots. Objects known to be directly accessible by program (e.g., stack).

Reachable objects. Objects indirectly accessible by program
(starting at a root and following a chain of pointers).

1/9\7
»w/’/-

\-/u i -'
\

Reachability application: mark-sweep garbage collector

Mark-sweep algorithm. [McCarthy, 1960]
e Mark: mark all reachable objects.

» Sweep: if object is unmarked, it is garbage (so add to free list).

Memory cost. Uses 1 extra mark bit per object, plus DFS stack.

’/%\‘[
»w/’/-

\/i '
SM/'

25

Depth-first search in digraphs summary

DFS enables direct solution of simple digraph problems.
Reachability.

Path finding.

Topological sort.

Directed cycle detection.

Transitive closure.

Basis for solving difficult digraph problems.
* Directed Euler path.
» Strongly-connected components.

26

Breadth-first search in digraphs

Same method as for undirected graphs.

» Every undirected graph is a digraph (with edges in both directions).

* BFS is a digraph algorithm.

BFS (from source vertex s)

Put s onto a FIFO queue, and mark s as visited.
Repeat until the queue is empty:

- remove the least recently added vertex v

- for each unmarked vertex adjacent from v:

add to queue and mark as visited..

T
]
!
.

i

RuR
.
[
-
!

Proposition. BFS computes shortest paths (fewest number of edges).

Breadth-first search in digraphs application: web crawler

Goal. Crawl web, starting from some root web page, say www.princeton.edu.
Solution. BFS with implicit graph.

BFS.

* Choose root web page as source s.

* Maintain a gueue of websites to explore.
* Maintain a ser of discovered websites.
* Dequeue the next website and enqueue
websites to which it links
(provided you haven't done so before).

Q. Why not use DFS?

28

Bare-bones web crawler: Java implementation

Queue<String> queue = new Queue<String>() ;
SET<String> visited = new SET<String>() ;

String s = "http://www.princeton.edu";
queue.enqueue (s) ;
visited.add(s) ;

while ('qg.isEmpty())
{
String v = queue.dequeue() ;
StdOut.println(v) ;
In in = new In(v);
String input = in.readAll();

String regexp = "http:// (\\w+\\.)* (\\w+)";

Pattern pattern = Pattern.compile (regexp);, «—

Matcher matcher = pattern.matcher (input) ;
while (matcher.find())
{
String w = matcher.group() ;
if (!'visited.contains(w))
{
visited.add (w) ;
queue.enqueue (W) ;

D

queue of websites to crawl
set of visited websites

start crawling from website s

read in raw html from next
website in queue

use regular expression to find all URLs
in website of form http://xxx.yyy.zzz

if unvisited, mark as visited
and put on queue

29

» topological sort

30

Precedence scheduling

Goal. Given a set of tasks to be completed with precedence constraints,
in which order should we schedule the tasks?

Graph model. vertex = task; edge = precedence constraint.

O vl A W N — O

. Algorithms

Complexity Theory
Artificial Intelligence
Intro to CS
Cryptography

Scientific Computing
Advanced Programming

0

A

/

(2)—(>) 9

®

L=

tasks

precedence constraint graph

OICxC,

feasible schedule

(read up!) 3

Topological sort

DAG. Directed acyclic graph.

Topological sort. Redraw DAG so all edges point up.

0—5
0—1
3—5
5—4

1—4

0—2

3—4
6—4

0
A

R
o

L=

directed edges

Solution. DFS. What else?

OICxC,

topological order

32

Depth-first search order

public class DepthFirstOrder

{

private boolean[] marked;
private Stack<Integer> reversePost;

public DepthFirstOrder (Digraph G)
{

reversePost = new Stack<Integer>()

marked = new boolean[G.V ()]’
for (int v = 0; v < G.V(); v++)
if ('marked[v]) dfs (G, Vv);

private void dfs(Digraph G, int v)
{
marked[v] = true;
for (int w : G.adj(v))
if ('marked[w]) dfs (G, w);
reversePost.push (v) ;

public Iterable<Integer> reversePost ()
{ return reversePost; }

returns all vertices in
“reverse DFS postorder”

33

Reverse DFS postorder in a DAG

0—5
0—2
0—1

3—5
3—4

6—4
6—0
3—2

dfs (0)

dfs (1)
dfs (4)
4 done

1 done

dfs (2)

2 done

dfs (5)

5 done
0 done

dfs (3)

dfs (6)
6 done
3 done

done

=
=

o

reversePost

(§)

o O

o O

6

OICxC,

reverse DFS
postorder is a
topological order

34

Topological sort ina DAG: correctness proof

Proposition. Reverse DFS postorder of a DAG is a topological order.
Pf. Consider any edge v—w. When dfs (G, v) is called:

» Case 1: dfs(G, w) has already been called and returned.
Thus, w was done before v.

» Case 2: dfs(G, w) has not yet been called.
It will get called directly or indirectly
by dfs (G, v) and will finish before dts (e, v).
Thus, w will be done before v.

dfs (0)

dfs (1)
dfs (4)
4 done

1 done

dfs (2)

2 done

dfs (5)

5 done
0 done

EX: ———— dfs (3)

case | <

* Case 3: dfs(G, w) has already been called, case 2 <

but has not returned.
Can't happen in a DAG: function call stack contains
path from w to v, so v—w would complete a cycle.

dfs (6)
6 done

3 done

done

all vertices adjacent from 3 are done before 3 is done,
so they appear after 3 in topological order

35

Directed cycle detection

Proposition. A digraph has a topological order iff no directed cycle.
Pf.

o If directed cycle, topological order impossible.
» If no directed cycle, DFS-based algorithm finds a topological order.

Goal. Given a digraph, find a directed cycle.

Solution. DFS. (What else?) See textbook.

36

Directed cycle detection application: precedence scheduling

Scheduling. Given a set of tasks to be completed with precedence
constraints, in what order should we schedule the tasks?

PAGE 3

DEPARTMENT COURSE DESCRIPTON PREREQS

COMPUTER CPSC Y32 | INTERMEDIATE COMPILER [CPSC 432
SCIENCE DESIGN, WITH A FOCUS ON
DEPENDENCY RESOLUTION.

S dd

= P ——

PP T PN

e WV WWal Vi

http://xkcd.com/754

Remark. A directed cycle implies scheduling problem is infeasible.

Directed cycle detection application: cyclic inheritance

The Java compiler does cycle detection.

public class A extends B % Jjavac A.java

{ A.java:1: cyclic inheritance
involving A

} public class A extends B { }
1l error

public class B extends C

{

public class C extends A

{

Directed cycle detection application: spreadsheet recalculation

Microsoft Excel does cycle detection (and has a circular reference toolbarl)

® 00 ‘| Workbook1
< A | B | C | D
" " " " " "
1 "=Bl1+1 =Cl +1 =Al +1
7 Microsoft Excel cannot calculate a formula.
8 Cell references in the formula refer to the formula's
result, creating a circular reference. Try one of the
9 following:
10 « If you accidentally created the circular reference, click
OK. This will display the Circular Reference toolbar and
1 1 help for using it to correct your formula.

» To continue leaving the formula as it is, click Cancel.

12 (Cancel) f—Ol(—a

<« » » [sheetl |Sheet2 | Sheet3

Directed cycle detection application: symbolic links
The Linux file system does not do cycle detection.

ln -s a.txt b.txt

ln -s b.txt c.txt
ln -s c.txt a.txt

o® o° o

o\°

more a.txt
a.txt: Too many levels of symbolic links

40

Directed cycle detection application: WordNet

The WordNet database (occasionally) has cycles.

WordNet Search - 3.0 - WordlNet home page - Glossary - Help

Word to search for: | dampen Search WordNet
Display Options: | (Select option to change) v

Key: "S:" = Show Synset (semantic) relations, "W:" = Show Word (lexical) relations

Verb

e 5 (v) stifle, dampen (smother or suppress) “Stifle your curiosity”
O direct troponym ! full iroponym
O direct hypernym [inherited hypernym [sister terin
e 5. (v) suppress, stamp down, inhibit, subdue, conquer, curb (to put down by force or authonty) “suppress @ nascent uprising; “stamp down on littering"; "conquer one's desires"
O direct troponym | full iroponym
O direct hypernym | inherited hypernym ! sister term
e 3. (v) control, hold in, hold, contain, check, curb, moderate (lessen the intensity of, temper; hold in restraint; hold or keep within limits) “moderate your alcohol intake";
"hold your tongue"; "hold your temper”; "control your anger"
O direct troponym | full iroponym
O direct hypernym | inherited hypernym ! sister term
e 5. (v) restrain, keep, keep back, hold back (keep under control; keep in check) “suppress a smile"”; “Keep your temper''; “keep your cool"
O direct troponym | full iroponyin
O direct hypernym | inherited hypernym | sister term
e 3 (v) inhibit, bottle up, suppress {control and refrain from showing, of emotions, desires, impulses, or behavior)
o direct troponym | full troponym
O direct hypernym | inherited hypernymn | sister term
e 5 (v) restrain, keep, keep back, hold back (keep under control; keep in check) “suppress a smile”; “Keep your temper"'; “kesp
your cool”
0 direct troponyin | full troponyin
o direct hypernym | inherited hypernyn | sister term
e 5 (v) mnhibit, bottle up, suppress (control and refrain from showing, of emotions, desires, impulses, or behavior)

O derivationally related form
O senience frame

O derivationally related form

41

» strong components

42

Strongly-connected components

Def. Vertices v and w are strongly connected if there is a directed path
from v to w and a directed path from w to v.

Key property. Strong connectivity is an equivalence relation:
* vis strongly connected to v.

« If vis strongly connected to w, then w is strongly connected to v.

* If vis strongly connected to w and w to x, then v is strongly connected to x.

Def. A strong component is a maximal subset of strongly-connected vertices.
}O.

§

@/

efe

43

Connected components vs. strongly-connected components

v and w are connected if there is
a path between v and w

3 connected components

connected component id (easy to compute with DFS)

0 1 2 3 4 5 6 7 8 910 11 12
cc[] O O 0 0O 0O O 1 1 1 2 2 2 2

public int connected(int v, int w)
{ return cc[v] == cc[w]; }

A
I

constant-time client connectivity query

v and w are strongly connected if there is a directed
path from v to w and a directed path from w to v

@@
=5

5 strongly-connected components

X

ele

strongly-connected component id (how to compute?)

0 1 2 3 4 5 6 7 8
scc[]1 0 1 1 1 1 3 4 4

9 10 11 12
2 2 2 2

public int stronglyConnected(int v, int w)
{ return scc[v] == scc[w]; }

A
I

constant-time client strong-connectivity query

44

Strong component application: ecological food webs

Food web graph. Vertex = species; edge = from producer to consumer.

m o~ vole great egret
fox i

~

: blue-gill fish
northern copperbelly
water snake

N

Tt
shrew

s

i,
e
AL

leopard frog ——

spotted salamander

algae (magnified)

cattails

http:/ /www.twingroves.district96.k12.il.us/Wetlands/Salamander/SalGraphics/salfoodweb.gif

Strong component. Subset of species with common energy flow.

45

Strong component application: software modules

Software module dependency graph.
* Vertex = software module.
» Edge: from module to dependency.

N\
ZA\
==
=

A\

|
)

AN
0

!

Firefox Internet Explorer

Strong component. Subset of mutually interacting modules.
Approach 1. Package strong components together.
Approach 2. Use to improve design!

46

Strong components algorithms: brief history

1960s: Core OR problem.
» Widely studied; some practical algorithms.
e Complexity not understood.

1972: linear-time DFS algorithm (Tarjan).

e Classic algorithm.

 Level of difficulty: Algs4++.

* Demonstrated broad applicability and importance of DFS.

1980s: easy two-pass linear-time algorithm (Kosaraju).
* Forgot notes for lecture; developed algorithm in order to teach it!
e Later found in Russian scientific literature (1972).

1990s: more easy linear-time algorithms.
* Gabow: fixed old OR algorithm.
 Cheriyan-Mehlhorn: needed one-pass algorithm for LEDA.

47

Kosaraju's algorithm: intuition
Reverse graph. Strong components in G are same as in G*.

Kernel DAG. Contract each strong component into a single vertex.

?
Idea. how to compute?

» Compute topological order (reverse postorder) in kernel DAG.
* Run DFS, considering vertices in reverse topological order.

of o G
Y e

digraph G and its strong components kernel DAG of G

48

Kosaraju's algorithm

Simple (but mysterious) algorithm for computing strong components.
e Run DFS on G* to compute reverse postorder.

e Run DFS on G, considering vertices in order given by first DFS.

DFS in reverse digraph (ReversePost)

O

GR

5

@(

check unmarked vertices in the order
01234567389 1011 12

O-GEG-GE

dfs(0)
dfs(6)
dfs(7)
dfs(8)
check 7
8 done
7 done
6 done
dfs(2)
dfs(4)
dfs(11)
dfs(9)
dfs(12)

102453119 12106 7 8

reverse postorder

N~

check 11

49

Kosaraju's algorithm

Simple (but mysterious) algorithm for computing strong components.
* Run DFS on G* to compute reverse postorder.

* Run DFS on G, considering vertices in order given by first DFS.

DFS in original digraph
0

; ﬁf (6 <(D=®

@/' dfs(1) dfs(0) dfs(11) dfs(6) dfs(7)

®
O

1 done dfs(5) check 4 check 9 82625)6
check unmarked vertices in the order df3§2%3) dfzgi%%) Eﬂzgt g zheck 7
10245311912106 7 8 check 5 check 11 6 done check 9
dfs(2) dfs (10) 8 done
check 0 check 12 7 done
check 3 10 done
2 done 9 done
3 done 12 done
check 2 11 done
4 done
5 done
check 1
0 done

Proposition. Second DFS gives strong components. (1)

50

Kosaraju proof of correctness
Proposition. Kosaraju's algorithm computes strong components.

Pf. We show that the vertices marked during the constructor call dafs (G, s)
are the vertices strongly connected to s.

< [If ¢ is strongly connected to s, then ¢ is marked during the call afs (G, s).]
* There is a path from s to ¢, so ¢ will be marked

during dfs (G, s) unless ¢t was previously marked.

dfs (G, s)

e There is a path from ¢ to s, so if ¢ were previously §
marked, then s would be marked before ¢ finishes dfs (G, t)
(so afs (¢, s) would not have been called in constructor).

check s
t done

s done

51

Kosaraju proof of correctness (continued)

Proposition. Kosaraju's algorithm computes strong components.

=> [If ¢ is marked during the call a£s (e, s), thentis strongly connected to s.]

 Since ¢ is marked during the call d£s (G, s), there is a path from s tozin G
(or, equivalently, a path from ¢ to s in GX).

* Reverse postorder construction implies that ¢ is done before s in dfs of G~

* The only possibility for dfs in G* implies there is a path from s to ¢ in G*.
(or, equivalently, a path from ¢ to s in G).

dfs (GR, s) dfs (GR, t)
dfs (GR, t) dfs (GR, s)
check s
t done
t done
s done X
s done ‘/

no path fromtto s in GR DFS must nest

52

Connected components in an undirected graph (with DFS)

53

Strong components in a digraph (with fwo DFSs)

DepthFirstOrder dfs = new DepthFirstOrder (G.reverse());
for (int v : dfs.reversePost())

54

Digraph-processing summary: algorithms of the day

single-source
reachability

DFS

topological sort

DFS
(DAG)

strong

< Kosaraju
components 5\!} DFS (twice)
\

