4.1 Undirected Graphs

ugssaawd—qde.l

yoseas

© tree

o representatlon =3
Many consudera

verticeSn. > graph APl
edge s » depth-first search

Algorithms g DFS © » breadth-first search

géaphs a”a’“"'e » connected components
eages » challenges

-
-

uonejuawajdw

1aa;

Algorithms, 4 Edition - Robert Sedgewick and Kevin Wayne - Copyright © 2002-2010 - February 6, 2011 4:32:15 PM

Undirected graphs

Graph. Set of vertices connected pairwise by edges.

Why study graph algorithms?
» Interesting and broadly useful abstraction.

* Challenging branch of computer science and discrete math.
* Hundreds of graph algorithms known.
» Thousands of practical applications.

& L = "
e 0 0 ply
o ®,79% a8
L Wy A oﬂo\'ol
o

._,_,..._...._.w .,

o« 5 y e O TR DIUIAACR 3 ~
¢ % m.. el THLE TN BN e o
® p jog oo\..oooo e ® ., °®
se 0 ooo ¢ %00 I .
o ¢ o ¢ \° Y
) P L] .O. Q ° °
® % o B
d v . e ° »
2 ¢ o ol % 4 o
P o480 \Q
$¢ o ® t.*...
.. ° ...

Protein-protein interaction network
<
= =

Reference: Jeong et al, Nature Review | Genetics

The Internet as mapped by the Opte Project

200.33.210.250

207.205.230.105
207.205.2443 b95.230.110

207.207.230.128

3 28678151110

207 207.205.230.117
207.205.280.163 207.205.231
| p¥230.102

207.205.230.174
207.205]

02,205.230.18%
§7.205,249.117

http://en.wikipedia.org/wiki/Internet A\ 205 220 26
2417.205.230.113(7 00 050k 207.205.2
20p.23001%9

207.205.280.155
01.205.230.190 207.2

Map of science clickstreams

Minerology
. L]
K

L

Acoustics

Manufacturing M |
Production aterial science

research Engineering

Economics

Applied
physics

Electrochemistry

Physical -
°
ch.emlslry °

Social work
o °

.0 ° Psychology

e °®

Social\and personality) ’Ph;vmaceuhcal
psychology) research
° ’

°
. /Anthropology, ~0) .
Psychology € : Chemical
5 Engineering
.
®

ognitive
Science

Geology

http://www.plosone.org/article/info:doi/10.1371/journal.pone.0004803

Kevin's facebook friends (Princeton network)

>
s]
. @ £
£ ¢ Z g
E 14
T 2 g
T €
% = b
2 32 S
S 3 *

4

_'/A /"?ﬂfy’ / TN S

.’/;

' /ﬂﬂ

SR Ay
W

(\0“&‘
._l't : . God®
. N
“\\\\‘\l\\‘ ‘ / - - W out
SRR e | /] // 4B, 7 pob MO
N& V\\\\‘\“v" I/ J%iigﬁgg%ii}‘?}"ﬂh o /l = ‘ T de GaioW©
\m\\\ “\m‘,\w") /.yﬂ’”‘ LA 77 pavi .
""@‘“\‘%ﬁsﬁa.::aﬂﬁﬁvﬂwﬁ‘" 1 1 Robert J. Yender>®!
“"k“.‘%‘ . ‘%ﬂylllj Iif.’lr‘j / ! .
A 2 /

Thais Melo
@ Debbie Peikes

) Norman vy

S G e &
g = s £ s . X
2 ¢ g % 2 % 2 ”
4 . Z V5
g & T F§ L EEFE vezRE 2 F o 2y
070“’ 3:05173‘69’/5,7L
$¥§§>E;N;“EC%%%Q;
s § g L2 s 28 8 3 3 2 g
\“’*"E'Q,'E“ T O m = o <%
R 59833 3
= T s g
a z 2
%

10 million Facebook friends

facebook

"Visualizing Friendships" by Paul Butler

One week of Enron emails

benjamin.rogers a_shankman v.weldon
KEY: il andy vince kamineii
EMPLOYEE (E-MAIL ADDRESS) . carasemp | zpper fracy.geaccone
H o | theresa staab
AT LEAST ONE E-MAIL CONTACT++++++++; l ® ® o tebiokey
BETWEEN EMPLOYEES : tana jones
t?'oopu.rldny o s.ward
emgdun. ® O susanscon
““-"WY. @ Susan bailey
danny.mccarty : don baughman
(& dana scholtes @ stophanie panus
darrell schoolcraft : sy gﬁa l m:uuw @ stanley horton
dasron.geon o O rad b'm. ":‘ P 1 * i8.gécmeny @ stacy.dickson
david delainey g flatcher.stum g, @ o orend @ shalloy.corman
debea peringlere franik. ermis g mkary
b4 geoft.storey @ .bil. ilkams @ sara shackleton
d.martn o harry.arora @ @ Adrewlewts @ sally.beck
drew fossum o h.lewis @ The analysis detected @ andrearing @ yonsiger
d.momas g el .’ 4 an anomaly: a new e- @ amann s rodhoysion
N i mail address for this @ steven kean
dutch.quigley @ refimeyer @ john tavorato g person, who had been ® scortneal @ rick.buy
o haedicke g etlking @ “phillip.allen” for 131 @ richard shapro @ richard sanders
jim. schwieger @ previous weeks.
elizabeth sager @ oot & ® louise. kitchen @ richard.ring
08, S
erol mclal ® kevin presto
e foo quenet @ R ® phip pater
f.campbell g john.amold @ % = 3 : ® philiplove
) barry tycholiz
geir.solberg @ john.torney @ james. stetfes o @ paul thomas
gerald nemec @ fohn.zutterl @ © viadipi ® m.scott
rogwhatey @ jonathan mdtuy.. ® tori kuykendal @ m.presio
holden. sakisbury @ % ° ® tom donohoe @ monika causholl
james derrick @ '”M'“_""m‘d. @ ke grigsby ©® thomas. martin @ m_love
))) ® susan pereira
jason witiams @ kevin.ruscit @ © stoven.south ® mike.meconnell
jason wolle @ W’YJ“IIY.. @ s shively @ michelle lokay
-gay @ scott hendrickson)
jelirey hodge @ Lm.. 3 ® @ michelie.cash
joftray.shankman @ martin_cuilla ® e @ robertbenson ® m fomey
jeft.skilling ® T T S
miko.carson T ® Thisp.afen © mark whitt
mike. magol peter keavey °
mike.swerzbin patrice. mims mark.taylor
" monique sanchez . tholt haedicke
Company leaders e-mail | vt ° " ° ,,:::“, o
less frequently, leaving b stepenovitch @ @ avio hoard Sources: D
some communication to john grifteh @ P ° ® o bl Er:? E. Priebe
subordinates. johhodge @ 0 ° °. Iz taylor Park Jonns.
J .gang Hopkins
kam keiser r o T ? indy.donoho University
kate.symes m larry.
kay.mann Kimward
Finding Patterns kenneth.lay “™
In Corporate Chatter

The evolution of FCC lobbying coalitions

Fred Williamson & Associates Consolidated Companies o -
) F T PriorityOne Raw Bandwidth
® \Grampla'tchmn .MM elecom o — Ruddatz
* ® MegaCLEC i
Waralk H ha Broadband *_ Z
Home Telephone Integra Telecom b .K"°‘°9Y s
PET Sta Globalcom
Earthlink™® o
Rural Utilities Service ® US. TelePacific

Alliance of Rural CMRS Carriers

L]

5. —_ NE Colorado Cellular Balhoff & Rowe

N ”w PCS .
' Montana PCS Frontier Windstream

“The Evolution of FCC Lobbying Coalitions” by Pierre de Vries in JoSS Visualization Symposium 2010

Graph applications

communication

circuit
mechanical
financial
transportation
internet
game
social relationship
neural network
protein network

chemical compound

telephone, computer
gate, register, processor

joint

stock, currency

street intersection, airport
class C network
board position
person, actor

neuron
protein

molecule

fiber optic cable
wire
rod, beam, spring
transactions
highway, airway route
connection
legal move
friendship, movie cast
synapse
protein-protein interaction

bond

10

Graph terminology

Path. Sequence of vertices connected by edges.
Cycle. Path whose first and last vertices are the same.

Two vertices are connected if there is a path between them.

vertex

cycle of edge

length'5 \ l

path of
« length 4

N connected
c

omponents

vertex of

degree 3

11

Some graph-processing problems

Path. Is there a path between s and 1?
Shortest path. What is the shortest path between s and 1?

Cycle. Is there a cycle in the graph?
Euler tour. Is there a cycle that uses each edge exactly once?
Hamilton tour. Is there a cycle that uses each vertex exactly once?

Connectivity. Is there a way to connect all of the vertices?
MST. What is the best way to connect all of the vertices?

Biconnectivity. Is there a vertex whose removal disconnects the graph?

Planarity. Can you draw the graph in the plane with no crossing edges?
Graph isomorphism. Do two adjacency lists represent the same graph?

Challenge. Which of these problems are easy? difficult? intractable?

12

» graph API

13

Graph representation

Graph drawing. Provides intuition about the structure of the graph.
Caveat. Intuition can be misleading.

Two drawings of the same graph

14

Graph representation

Vertex representation.
» This lecture: use integers between o and v-1.

» Applications: convert between names and integers with symbol table.

self loop parallel

] edges
Anomalies. .@‘llo

15

Graph APT

public class Graph

Graph (int V) create an empty graph with V vertices
Graph (In in) create a graph from input stream
void addEdge (int v, int w) add an edge v-w
Iterable<Integer> adj(int v) vertices adjacent to v
int V() number of vertices
int E() number of edges
String toString() string representation
In in = new In(args[0]) read graph from
Graph G = new Graph (in) ; | inputstream

for (intlv = 0,' v < G-V(); v++) print out each
for (int w : G.adj(w)) T edge (twice)
StdOut.println(v + "-" + w);

Graph APT: sample client

Graph input format.

tinyG. txt
V\ﬂ;13 v
13(

05
O

U'IE)\IOO::‘OU'I@@OA
=
N

In in = new In(args|[0]);
Graph G = new Graph(in);

for (int v = 0; v < G.V(); v++)
for (int w : G.adj(w))
StdOut.println(v + "-" + w);

J
6
2
1
0
0

W W IMNDEKE OO O O

-5
-5
-4
12-11
12-9

ava Test tinyG.txt

b.—

(_-—

read graph from
input stream

print out each
edge (twice)

17

Typical graph-processing code

compute the degree of v

public static int degree(Graph G, int v)
{
int degree = 0;
for (int w : G.adj(v)) degree++;
return degree;

}

compute maximum degree

public static int maxDegree(Graph G)
{
int max = 0;
for (int v = 0; v < G.VO; v++)
if (degree(G, v) > max)
max = degree(G, Vv);
return max,

compute average degree

public static int avgDegree(Graph G)
{

}

return 2 * G.EQ) / G.VQO;

count self-loops

public static int numberOfSelfLoops(Graph G)
{
int count = 0;
for (int v = 0; v < G.VO; v++)
for (int w : G.adj(v))
if (v == w) count++;
return count/2;

18

Set-of-edges graph representation

Maintain a list of the edges (linked list or array).

=

R O VW VW Jd&d~dWWwWo o o o

O 0o L U1 OY WD R

19

Adjacency-matrix graph representation

Maintain a two-dimensional V-by-V boolean array;

true.

adj[w] [v] =

for each edge v-w in graph: adj[v] [w]

two entries

for each edge

12

11

10

10

11

12

20

Adjacency-list graph representation

Maintain vertex-indexed array of lists.
(use Bag abstraction)

[o5)
o

AN\ N

O© 00 N O U1 A W N R O

=
o

(s 2

[
N

~6 {21 {5]

~[0]

~[0]

~(5 4]

Bag objects

~{e{3]

~B a0

representations
of the same edge

~[12f~{20}~{12]

=[]

~[oj—12

~[u[]

21

Adjacency-list graph representation: Java implementation

public class Graph
{

private final int V;
private Bag<Integer>[] adj;

public Graph (int V)
{
this.V = V;
adj = (Bag<Integer>[]) new Bag[V];
for (int v = 0; v < V; v++)
adj[v] = new Bag<Integer>() ;

public void addEdge (int v, int w)
{

adj[v].add (w) ;

adj[w] .add(v) ;

public Iterable<Integer> adj(int v)
{ return adj[v]; }

adjacency lists
(use Bag data type)

create empty graph
with v vertices

add edge v-w
(parallel edges allowed)

iterator for vertices adjacent to v

22

Graph representations

In practice. Use adjacency-lists representation.

 Algorithms based on iterating over vertices adjacent fo v.
 Real-world graphs tend to be "sparse.”

representation

\ huge number of vertices,
small average vertex degree

space add edge edge between iterate; over vertices
v and w? adjacent to v?
list of edges E 1 E E
adjacency matrix V2 1* 1 Vv
adjacency lists E+V 1 degree(v) degree(v)

* disallows parallel edges

23

Graph representations

In practice. Use adjacency-lists representation.

 Algorithms based on iterating over vertices adjacent to v.
* Real-world graphs tend to be "sparse.”

\ huge number of vertices,

small average vertex degree

sparse (E=200)

dense (E=1000)

Two graphs (V = 50)

24

» depth-first search

25

Maze exploration

Maze graphs.
e Vertex = intersection.
* Edge = passage.

(11 IUI IDW

= Sue |

| L
==L

e ol
/

/

intersection passage

Goal. Explore every intersection in the maze.

Trémaux maze exploration

Algorithm.
 Unroll a ball of string behind you.

* Mark each visited intersection and each visited passage.
» Retrace steps when no unvisited options.

SARANNAZ

=

AN S

27

Trémaux maze exploration

Algorithm.

 Unroll a ball of string behind you.

* Mark each visited intersection and each visited passage.
» Retrace steps when no unvisited options.

First use? Theseus entered labyrinth to kill the monstrous Minotaur:;
Ariadne held ball of string.

Claude Shannon (with Theseus mouse)

28

Maze exploration

29

Maze exploration

%

L I—l_IL

L

m

L

—

=

]
|

L

:

i

-

oy
] e

|>I_|I|I|J

1

i

B

Depth-first search

Goal. Systematically search through a graph.
Idea. Mimic maze exploration.

DFS (to visit a vertex v)

Mark v as visited.
Recursively visit all unmarked

vertices w adjacent to v.

Typical applications. [ahead]
* Find all vertices connected to a given source vertex.

* Find a path between two vertices.

Design pattern for graph processing

Design pattern. Decouple graph data type from graph processing.

public class Search

Search (Graph G, int s) find vertices connected to s

boolean marked(int v) is vertex v connected to s?

int count() how many vertices connected to s?

Typical client program.
e Createa Graph.
 Pass the craph to a graph-processing routine, e.g., search.

* Query the graph-processing routine for information.

Search search = new Search (G, s);
for (int v = 0; v < G.V(); v++)

if (search.marked(v)) . .

] print all vertices

StdOut.println(v) ; =+ onnected to s

Depth-first search (warmup)

marked[] adj[]

Goal. Find all vertices connected to s. 4Fs (0 o0 9)E3e
2 2 0134
L. . 3 3542
Idea. Mimic maze exploration. la;@égi S
dfs(2) (0) (2) o/T 0215
. check 0 7 1 1,02
Algorithm. /@Zl’ AR A
4 432
» Use recursion (ball of string). 0
e Mark each visited vertex. I heck 0 M o1T 931
check 2 2T 2 134
one 3 3. 542
e Return (retrace steps) when no He l@;@<(i I EF:
unvisited options. 453 S
17T 1
Mf Tzl
4 4 32
5 30
Data structure. 5
o _o . dfs(5)
* boolean[] marked to mark visited vertices. check 3 T o3fol’
s @ ST S
sit 2136
! eherk 3 o7 9ede
s e @:< LRI
et O o
check 4
2 done
check 1
check 5

0 done

Depth-first search (warmup)

public class DepthFirstSearch
{

private boolean[] marked; D E——

public DepthFirstSearch (Graph G, int s)
{

marked = new boolean[G.V()];

dfs (G, s); —

private void dfs(Graph G, int v)
{

marked[v] = true;

A

for (int w : G.adj(v))
if ('marked[w])
dfs (G, w);

public boolean marked (int v)
{ return marked[v]; }

true if connected to s

constructor marks
vertices connected to s

recursive DFS does the work

client can ask whether
vertex v is connected to s

34

Depth-first search properties

Proposition. DFS marks all vertices connected to s in time proportional to the

su

m of their degrees.

Pf.

Correctness:

- if w marked, then w connected to s (why?)
- if w connected to s, then w marked
(if w unmarked, then consider last edge
on a path from s to w that goes from a
marked vertex to an unmarked one)

Running time: each vertex
connected to s is visited once.

source set of marked
vertices

no such edge

set of «— can exist

unmarked

vertices “a

35

Depth-first search application: preparing for a date

MIGHT T PREPPRE. RR?
) MEDWAL EMERGENCY
2) DANCING

[, DFO0D TIOEPENSVE

o}
o

1) A) SNAKEBITE
B) LIGHTNING STRIKE
©) FALLFRIM HAR

O,
0

A

[~~~ A~

PREPPRING FRADATE| [~V ¥ ~ ¥ ° v " 1
OKAY, WHAT KINDS OF
WHAT SITUATIONS EMERGENCIES CANHAPPEN? DANGEROUS? LET'S SEE...

HM. WHICH SNAKES ARE
DANGER

DA)@) (RN SNAKE. 7

b) GARTER SNAKE 7
g

%

o e

THE RESEARCH (OMPRARING
SNAKE VENOMS 1S SCATTERED
AND ICONSISTENT. TLL MAKE
A SPREADSHEET T ORGANIZE IT.

O

‘O

xkcd

http://xkcd.com/761/

IMHERETOPKK BY Dy, THE INAND
YOUUP. YOURE TAIPAN HAS THE DEADUEST
NOT DRESSED?

S

VENG'\OF'&I}’SNNQE‘.

T REALY NEED To SToP

USING DEPTH-FIRST SEARCHES.

36

Depth-first search application: flood fill

Challenge. Flood fill (Photoshop magic wand).
Assumptions. Picture has millions to billions of pixels.

Q. How difficult?

37

Depth-first search application: flood fill
Change color of entire blob of neighboring red pixels to blue.

Build a grid graph.

* Vertex: pixel.

» Edge: between two adjacent red pixels.
 Blob: all pixels connected to given pixel.

\ recolor red blob to blue

38

Depth-first search application: flood fill
Change color of entire blob of neighboring red pixels to blue.

Build a grid graph.

* Vertex: pixel.

» Edge: between two adjacent red pixels.
 Blob: all pixels connected to given pixel.

\ recolor red blob to blue

39

Paths in graphs

Goal. Does there exist a path from s to ¢?

b edabe o e nuhsh omdt
S
RChEnt i
gigglotasts rAde b A D hEnn
g r; : s Ho e
g. gt d I e m]lmmw
T, vttt 1
ATy e S b
== weglisfpestadiatthi ooty isctsste
gagjifonss 1y 1 : ix
— WlHTT HH _H .| HH T.H LUII_WHl
T o 1 ! 1 I I
1 m e e IHLT
_nL Hﬂmr THTWTL rm) ‘| .11
fi e N 3
uﬂ sflssesesist 111
IHT) ITT S g : Ir o
g i =t Sabi=f ot
ateliasiitaatt LLH 888 s -y
HH szHhermlH S H T T
a3l yoly youdh SUE souts i s :
m‘ﬂnx I_rrfg *mm.iI:IL %ﬁ?mmf
1o H el b P R PHIEILE

40

Paths in graphs: union-find vs. DFS

Goal. Does there exist a path from s to ¢?

union-find V + Elog*V log*V f

DFS E+V]

E+V

Union-find. Can intfermix queries and edge insertions.

Depth-first search. Constant time per query.

41

Pathfinding in graphs

Goal. Does there exist a path from s to t? If yes, find any such path.

bt e aurtieh ot
S
NG A e
gigglotasts rAde b A D hEnn
g r; : s et
g apgt g i e e T T,
T, vttt mlr
ATy e S b
== rrigrs ey S e B R
gegjifonss Effsisints : ix
A e T
rMF m 5ese sl iealegsebis IHLT
! nL Hﬂmr Jrﬁii IU_) | .11
piEiHnnrImhan sk 3
fwﬂ ; afiysscesisligtiin]
IH% ! 11519 JI# L.fIHIHJr 4
. L] _ e v 1 o
131l Tl an ; 111 IH 1
THY HeE Sogesaiada] 7]
Begicfiocontinfiotses sogysiions g
mﬁnx iEgasiiiiseleey LA zmm Ho
_ 3 Y
1o H el b P R PHIEILE

42

Pathfinding in graphs

Goal. Does there exist a path from s to t? If yes, find any such path.

public class Paths

Paths (Graph G, int s) find paths in G from source s
boolean hasPathTo (int v) is there a path from s to v?
Iterable<Integer> pathTo(int v) path from s to v; null if no such path

Union-find. Not much help.
Depth-first search. After linear-time preprocessing, can recover path itself
in time proportional to its length. \

easy modification
(stay tuned)

43

Depth-first search (pathfinding)
Goal. Find paths to all vertices connected
to a given source s.

Idea. Mimic maze exploration.

Algorithm.

Use recursion (ball of string).

Mark each visited vertex by keeping

track of edge taken to visit it.

Return (retrace steps) when
no unvisited options.

Data structures.

e boolean[] marked To mark visited vertices.

* int[] edgeTo to keep tree of paths.
* (edgeTo[w] == v) means that edge v-w
was taken to visit w the first time

dfs(0)

dfs(2)
check 0

dfs(1)
check 0
check 2
1 done

dfs(3)

dfs(5)

check 3
check 0

5 done

dfs(4)

check 3
check 2

4 done
check 2
3 done
check 4
2 done
check 1
check 5
0 done

1

1

\q

5

K

NN

v W N
w NOoN

A

N

VA WN R
WwwNoON

N

VA WN R
wWwNOoN

edgeTo[]

N =
N

Depth-first search (pathfinding)

public class DepthFirstPaths

{

private boolean[] marked;

A

private int[] edgeTo;
private final int s;

public DepthFirstPaths (Graph G, int s)
{
marked = new boolean[G.V ()]
edgeTo = new int[G.V ()]’
this.s = s;
dfs (G, s);
}
private void dfs(Graph G, int v)
{
marked[v] = true;
for (int w : G.adj(v))
if ('marked[w])
{

edgeTo[w] = v;
dfs (G, w);

A

public boolean hasPathTo (int v)

A

public Iterable<Integer> pathTo (int v)

parent-link representation
of DFS tree

set parent link

ahead

45

Depth-first search (pathfinding trace)

edgeTo[]
dfs(0) 0
tinyCG. txt standard drawing dfs(2)
s
\%4 check 0
T E 210
8«
05
2 4
i ;) . dfs(1)
01 drawing with both edges check 0 12
check 2 2.0
34 1 done
35 (:L
02
dfs(3)
12
adjacency lists g g
215
. ~[o 2]
o adj check 3 12
check 0 2.0
ingfehiana e 5 don 1k
| 513
2
1 2]
| dfs(4)
4 .~ check 3 9
5 B check 2 0 % (2)
_\ 4 done G i §
~ check 2
IEI 3 done e >3
check 4
2 done
check 1
check 5

0 done

Depth-first search (pathfinding iterator)

edgeTo[] is a parent-link representation of a tree rooted at s.

@ 9 edgeTo[] @
(2)

urph W N R
w wNON

O N W v %
O N WWUV|T

public boolean hasPathTo (int v)
{ return marked[v]; }

public Iterable<Integer> pathTo (int v)

{
if ('hasPathTo(v)) return null;
Stack<Integer> path = new Stack<Integer>() ;
for (int x = v; x != s; x = edgeTo[x])

path.push (x) ;

path.push(s) ;
return path;

Depth-first search summary

Enables direct solution of simple graph problems.
v * Does there exists a path between s and ¢ ?
V'« Find path between s and .

» Connected components (stay tuned).
Euler tour (see book).

Cycle detection (see book).

Bipartiteness checking (see book).

Basis for solving more difficult graph problems.
 Biconnected components (beyond scope).
* Planarity testing (beyond scope).

48

» breadth-first search

49

Breadth-first search

Depth-first search. Put unvisited vertices on a stack.
Breadth-first search. Put unvisited vertices on a queue.

Shortest path. Find path from s to 7 that uses fewest number of edges.

BFS (from source vertex s)

Put s onto a FIFO queue, and mark s as visited.
Repeat until the queue is empty:

- remove the least recently added vertex v \Iiv//i\
- add each of v's unvisited neighbors to the queue,

and mark them as visited.

Intuition. BFS examines vertices in increasing distance from s.

50

Breadth-first search (pathfinding)

private void bfs(Graph G, int s)

{

Queue<Integer> g = new Queue<Integer>() ;

gq.enqueue (s) ;

marked[s] = true;
while (!'q.isEmpty())
{

int v = g.dequeue() ;
for (int w G.adj(v))
if ('marked[w])

{
g.enqueue (W) ;
marked[w] = true;
edgeTo[w] = v;

}

V=N

Awuv R

marked[] edgeTo[]

0T 0
1 1
2 2
3 3
4 4
5 5
0T 0
1T 1lo
20T 210
3 3
4 4
50T 500
0T 0
1T 10
20T 210
30T 3.2
4T 42
50T 500
0T 0
1T 10
20T 210
30T 3.2
4T 42
50T 500
0T 0
1T 10
20T 20
30T 3.2
40T 42
51T 500
0T 0
1T 10
20T 210
30T 3.2
40T 42
50T 500

VhwWNRO VA WNREO VhWNRO VhWNRO VhWNREO

VhWNRO

adj[]

215

wwuio o
ONARN

wwwuw wwuw wwuio o
[SYNES oONA RN

ON B

w U

3

NS

2

51

Breadth-first search properties

Proposition. BFS computes shortest path (number of edges) from s
in a connected graph in time proportional to £+ V.

Pf.
» Correctness: queue always consists of zero or more vertices of distance &

from s, followed by zero or more vertices of distance & + 1.

* Running time: each vertex connected tfo s is visited once.

standard drawing dist =0 dist =1 dist = 2
52

Breadth-first search application: routing

Fewest number of hops in a communication network.

-.
2%
° s —5 o~ L‘é oty

scoTT - ’@. NBS
a L)
\ NORSAR
SDAC A ”)

wirnt M W/

B AR
PENTAGON O
LONDON

GUNTER

SATELLITE CIRCUIT
NP

TP

PLURIBUS 1MP

(NOTE THIS MAP DOES NOT SHOW ARPA'S EXPERIMENTAL
SATELLITE CONNECTIONS }

NAMES SHOWN ARE 1MP NAMCS, NOT (NECESSARILY) HOST NAMES

oo §

ARPANET, July 1977

53

Breadth-first search application: Kevin Bacon numbers

Kevin Bacon numbers.

ann The Oracle of Bacon

ale e lle = | + L8] € tmp) jwww oracleofbacen org /(g Bis meviel nks)game - C4Arstnasme = K

evineBaco O B Q-

[The Curis | woe of Mugic COS 126 FOR ACM Awands Wang 518 McCuachy | Memepage Stocks COSIZ6FO7 TPM KSS (1742)% Eschaten

THE ORACLE

OF BACON

Endless Games board game
Buzz Mauro

Sweet Dreams (2005) |
Tatiana Ramirez
n New begrees
N B) I Uma Thurman
. acted in
Andres Suarez Be Cool (2005) 1
- with
Carlita's Secret (2004) | Scott Adsit
o who acted in
Paula Lemes (1) The Informant! (2009) o
with
Frost/Nixon (2008) | Matt Damon
Kevin Bacon
B 10 suzzwm Tind bk Vore optont > >

Q

Lookup

http:/ /oracleofbacon.org SDLEEIGEES NHIEME AT

Kevin Bacon graph

 Include a vertex for each performer and for each movie.

» Connect a movie to all performers that appear in that movie.

» Compute shortest path from s = Kevin Bacon.

— Caligola

John
Gielgud

l

Glenn
Close

Portrait
of a Lady

—] Murder on the P~ AN
Orient Express

for Murder

Dial M

Patrick
_ Allen
7

N\

\ /

The Stepford | —
Wives

/

The

Nicole

Has Landed

Eagle

Kidman

/

7~

\

Hamlet [

/ I Vernon / \

Dobtcheff

movie
vertex
L
= Enigma
7
(N 4

Eternal Sunshine
of the Spotless
Mind

—_—

77T 1\

Cold

\ Mountain

7N\

/

An American
Haunting

\

Donald
Sutherland

John Ani
Belushi Ho!
7

mal
use

AN

The

—J|To Catch |—

a Thief

/ \

Kathleen
Quinlan

Apollo 13

Bi11
Paxton

~ |Woodsman
7T~ Bacon
N , o
| _ _Jwia [\
| Things The River
Jude 7T =1 wild [
7/ \ | N\

Kate

Meryl
Streep

Winslet

Titanic

/
Paul
Herbert

Grace
Kelly

\ e

__|Joe Versus
the Volcano

performer

/ vertex

The Da
Vinci Code

Yves
Aubert Shane
Zaza

Serretta
Wilson

55

Breadth-first search application: Erdds numbers

EEE— il
L GlugERrr . ! wWEYE TeLENT
| " S EEE Tt ;v‘a (I
184 B RA, -
' ATy EiRSTEMN SestmSRAEEE 5
anigi (:} . e 28NS
. e ATl £e35R7S BRRSHISD (Faripw.
Tuy (e : & faws) (Qrvdan
= : B MACWEL L 16K
CoxaTaE A *a? Ll el LETEn FEIT, HiLsaer
5 ZANP, (rvaed) L FiaRieR BOLYEXD
"R387. (L i ¥ SLOANE a ThertAsoy) Vou MEIH AL
| Boas) EYASLE
. ATHAL, ven AVERSA =] .
Besa) Saanadel}f (Rovanid (i (s vira} & : LASALI S W
WLAENA] 2 AuEi Fo Gasstal TeNELA %0957 : "
HRAT 3paUEAL
(Y] CAB03 o g48A1 . LASNIAR~Eg3TrR
! .”m - . . - STRAIENT,
o T i Lo } BIESTTH, Heass Gs4bs
‘ L St bornSCHILD,
| "~ ey ’! 7 FLarsesnd
(LD SN
E : S\, e Ed & rEns2ED] \\ ”M“/
- > 3 N S INPELL
: WANE Yy o -,) =~ q == - ul Turis
T KLEIFHANT : ol (LG
J Cliast s \,-3_ 7/ } i Bossc (FEWD)
CRLET, ! — - /\\{"‘N a¥ A L £ W—M‘I m
(O, L) A e ANAM Erpos] EHVATAL Y peritt
- o Sondy,
i : (D] ‘? ,‘ FoLxean W, R 2 oy ga b2 g
ii Atords - 2 Ly T S BEinara) \(Gazems E]
"-},.;.M_-I:H £a§ = r‘i"’% .f'":- b b pERL/ (T o
¢ -...i::.::-“; T . ot . o .;‘-_‘f— o == " 2
N - ;;, 2 W Borsegds g TuTTE 'l}l HAaRAeY B SeRvN L AT KNS s
U TBiacan H C o !
:L\-‘..._ ,—-L'i & T '. et pensh E‘“i"::’/ﬁ‘b‘&r E
| &4 (Fonnedizd) _.% /,/5 e NLA) 2 Wederdig) (ELATALEE
ol e e \>77 RANE £848 o
I ———w—‘ 5 O RART. ()
;o ; Ty 5 Vo Besim / =
h o S g / T . Roo g E‘
it g ARG guums 58 AMER HE DR wIanTT @
i | (Fredd ; QLTI i
B B Fis20AN WASH- w114 (FFa WeTIiE NGUTINT 4 o
T ¢ e ;
. (HETReii) = Trarie, Eenszp) /W =]
— -., /
P (Feata) “‘:‘:f, e Pusw ; &
s o e, (Pt AR\ ; B
“\s‘@ﬂ%, S femrny T
;arma:._. ———— 4 ' : ey \‘WM“- s T,
= Gonn LD\, vad Lid suu szg S : & %\. i
indndacy ™ i s.;;p""‘j; f
auwr: i RuedzSL =il HIHTRT Hﬁ»,id{o <
‘\.\‘\‘thd‘c‘dlf ,‘ L“’ M : ;Eausg} 5
ra 41 g H LANEE = Takix:
{caras Mam?(“ﬁ‘/’{ it %m s
Hﬁ&..\‘a!!’ﬁ Fand C.w:g,rr.-!'i WW;:;_
{?f T 57 : :

hand-drawing of part of the Erdos graph by Ron Graham

56

» connected components

57

Connectivity queries

Def. Vertices v and w are connected if there is a path between them.

Goal. Preprocess graph to answer queries: is v connected to w ?

in constant time.

public class CC

CC(Graph G) find connected components in G

boolean connected(int v, int w) are v and w connected?
int count() number of connected components

int id(int wv) component identifier for v

Union-Find? Not quite.
Depth-first search. Yes. [next few slides]

58

Connected components

The relation "is connected to" is an equivalence relation:
» Reflexive: v is connected to v.
e Symmetric: if vis connected to w, then w is connected to v.

* Transitive: if v connected to w and w connected to x, then v connected to x.

Def. A connected component is a maximal set of connected vertices.

v id[v]
0 0
0 1 0
2 0
3 0
O @ © 4« o
(o =19 s o
e ° 6 0
7 1
(11)—(12) s 1
> 9 2
10 2
3 connected components 11 2
12 2

Remark. Given connected components, can answer queries in constant time.

59

!

gl
=13

4

4

=

8

N

i

&

it
-
‘I_L‘ 'Y
E

~—e
2

I = BN 1

Q!

4 4

lH

o oo

!

60

,?ﬁ_IH
5

—o
> o
=
>—4

4

e

1

1iirail

1

"o

I

e

L.

I

>4

!

*—e

i

>—4

>

>4

T i
gt

IpE S|

*—o—

!
@5
!

4

2!

I
H=

63 connected components

Def. A connected component is a maximal set of connected vertices.

Connected components

SseEaseiers
- THHLI
JesR Hiseats rhrre it
Elice HE
ot asiibe! HHr.
=figatagly =iy =
! ! =
totgs 1
11 ﬁm R3cE
B S0 Loghisnd HIG

* o4

!

Connected components

Goal. Partition vertices into connected components.

Connected components

Initialize all vertices v as unmarked.

For each unmarked vertex v, run DFS to identify all tinyG. txt
vertices discovered as part of the same component. V\"g E
05
4 3
01
9 12
6 4
0 5 4
© o’
(D) (2) 11 12
9 10
© Gr@® o ¢
8D AN -
5 1D12) S

61

Finding connected components with DFS

public class CC

{
private boolean marked[];
private int[] id;
private int count;

public CC(Graph G)
{
marked = new boolean[G.V()];
id = new int[G.V()];
for (int v = 0; v < G.V();, v++)
{
if ('marked[v])
{
dfs (G, Vv);

A

A

A

count++;

public int count()
public int id(int v)
private void dfs(Graph G, int v)

A

id[v] = id of component containing v

number of connected
components

run DFS from one vertex in
each component

see next slide

62

Finding connected components with DFS (continued)

public int count()
{ return count:) <«——F—— number of connected components

public int id(int v) <«———+— id of component containing v
{ return id[v]; }

private void dfs(Graph G, int v)
{

marked[v] = true; all vertices discovered in

} _ . — .
id[v] = count; same call of dfs have same id

for (int w : G.adj(v))
if (!'marked[w])
dfs (G, w);

63

Finding connected components with DFS (trace)

dfs(0)
dfs(6)

check 0O
dfs(4)

dfs(5)

dfs(3)
check 5
check 4
3 done
check 4
check 0

5 done
check 6
check 3

4 done
6 done
dfs(2)

check 0
2 done
dfs(1)

check 0
1 done
check 5

0 done

count marked[] id[]
012 3456 7 8 9101112 012 3456 7 8 9101112

o T 0
O T T 0 0
O T T T 0 0 0
O T TTT 0 000
o T TTT 0 00O00O

=0 00

)0

9’0

) 112
O T TTTTT 0 00O0O0O
O TTTTTTT 000OO0OO0OO0OO

64

Finding connected components with DFS (trace)

count marked[] id[]
01234546 7 8 9101112 0123456 7 8 9101112
0 done
dfs(7) 1 TTTTTTTT 0000O0O0O01
dfs(8) 1 TTTTTTTTT 000000011
check 7
8 done
7 done
dfs(9) 2 TTTTTTTTTT 000O0O0OO0OO0O112
dfs(11) 2 TTTTTTTTTT T 0000000112 2
check 9
dfs(12) 2 TTTTTTTTTT TT 00000O0O0O112 2 2
check 11
check 9
12 done
11 done
dfs(10) 2 TTTTTTTTTTTTT 0000000112222
check 9
10 done
check 12 Q
9 done oe@

© C®
Lo

Connected components application: study spread of STDs

P
e NI
. W P /
.y X Y71) \<
e
‘\.\‘1*"(.(x*i.\(”,o (‘*A:"._'\ ./\%~
D R S R LS 7% p LY A\
R aF +“ B S IFASY o G
Sl 4 VR e,
u o—# »
> R
el Sy A,
S B i e s ey g
¥ /e
AN W
A2 v U ——s—

3 oy & Male
—_—— Female

Relationship graph at "Jefferson High"

Peter Bearman, James Moody, and Katherine Stovel. Chains of affection: The structure of

adolescent romantic and sexual networks. American Journal of Sociology, 110(1): 44-99, 2004.

66

Connected components application: particle detection

Particle detection. Given grayscale image of particles, identify "blobs."
* Vertex: pixel.

» Edge: between two adjacent pixels with grayscale value = 70.

* Blob: connected component of 20-30 pixels. N\ black = 0
dCK =
white = 255

A

Particle tracking. Track moving particles over time.

67

» challenges

68

Graph-processing challenge 1

Problem. Is a graph bipartite?

How difficult?
e Any COS 126 student could do it.

Hire an expert.

Intractable.

No one knows.

Impossible.

Need to be a typical diligent COS 226 student.

o B DNV PRP OO O O
o U1 dWWoOoO LN K

o B DN PR OO OO

o 01 bW Wo VN K

Bipartiteness application

P
W
Coute® & ¥ /
> LR CF 2
e vt TS 2 L T o e
P o
& TR N ST T /'
[
*>5>3:’i e O \
T .‘:‘; \\"\’.'/
)
~1 ’%*\» - 2y
X,‘ ,*-—/0’.,)_“ -
v PO !
,ﬁJY‘i. — o Y
7 » /N

y oy @& Male
-— Female

Relationship graph at "Jefferson High"

Peter Bearman, James Moody, and Katherine Stovel. Chains of affection: The structure of

adolescent romantic and sexual networks. American Journal of Sociology, 110(1): 44-99, 2004.

70

Graph-processing challenge 2

Problem. Find a cycle.

How difficult?
e Any COS 126 student could do it.

Hire an expert.

Intractable.

No one knows.

Impossible.

o B DNV PRP OO O O

o U1 dWWoOoO LN K

Need to be a typical diligent COS 226 student.

Graph-processing challenge 3

Problem. Find a cycle that uses every edge.
Assumption. Need to use each edge exactly once.

How difficult?

Any COS 126 student could do it.

Need to be a typical diligent COS 226 student.
Hire an expert.

Intractable.

No one knows.

Impossible.

o b W dNDMNMNPRE OO O O

o 1 d W NMNOYOGDN R

0-1-2-3-4-2-0-6-4-5-0

Bridges of Kénigsberg
The Seven Bridges of Konigsberg. [Leonhard Euler 1736]

“...in Konigsberg in Prussia, there is an island A, called the
Kneiphof; the river which surrounds it is divided into two branches ...
and these branches are crossed by seven bridges. Concerning these

bridges, it was asked whether anyone could arrange a route in such a

way that he could cross each bridge once and only once.”

Euler tour. Is there a (general) cycle that uses each edge exactly once?
Answer. Yes iff connected and all vertices have even degree.
To find path. DFS-based algorithm (see textbook).

73

Graph-processing challenge 4

Problem. Find a cycle that visits every vertex.
Assumption. Need to visit each vertex exactly once.

How difficult?

Any COS 126 student could do it.

Need to be a typical diligent COS 226 student.
Hire an expert.

Intractable.

No one knows.

Impossible.

0-5-3-4-6-2-1-0

ook W W MhNhNPREPr OO OO
1
oo 0t n d X DO TN R

74

Graph-processing challenge 5

Problem. Are two graphs identical except for vertex names?

How difficult?

e Any COS 126 student could do it.

Need to be a typical diligent COS 226 student.
Hire an expert.

Intractable.

No one knows.

Impossible.

0<>4, 1<3, 2<2,

3<6, 4<5, 5<0,

w_ bk W Ww o o o o
1
o U1 1 O TN KL

U W IdhNbNEFErPEFEPR OODO
| 1
O b b U oy U1 D

61

75

Graph-processing challenge 6

Problem. Lay out a graph in the plane without crossing edges?

How difficult?

e Any COS 126 student could do it.

Need to be a typical diligent COS 226 student.
Hire an expert.

Intractable.
No one knows.

Impossible.

w_ bk W Ww o o o o
1
o U1 1 O TN KL

76

