4.1 Undirected Graphs Undirected graphs

Graph. Set of vertices connected pairwise by edges.

Why study graph algorithms?

.m§ H * Interesting and broadly useful abstraction.
Qgrol:st{i:vrldse * Challenging branch of computer science and discrete math.
Eiuversgex * Hundreds of graph algorithms known.

i‘. “’“““‘Bgdfm « Thousands of practical applications.
S e oner
Py » graph API
edge met%:gf » depth-first search
Algorithms P cc | » breadth-first search
graphs Bz » connected components
edgeS% » challenges
-

Algorithms, 4" Edition - Robert Sedgewick and Kevin Wayne - Copyright © 2002-2010 - February 6, 2011 4:32:15 PM 2

Protein-protein interaction network The Internet as mapped by the Opte Project

http://en.wikipedia.org/wiki/Internet

Reference: Jeong et al, Nature Review | Genetics

Map of science clickstreams

http:/ /www.plosone.org/article/info:doi/10.1371/journal.pone.0004803

10 million Facebook friends

"Visualizing Friendships" by Paul Butler

Kevin's facebook friends (Princeton network)

o Robert J. Yonderbe!
g Thais Melo
» Debbie Peikes

Norman vu

» Sophic
#

Qngzhe
n Wang

Db Barogyy,

One week of Enron emails

vweldon

l

KEY.
EMPLOYEE (E-MAIL ADDRESS). rase

AT LEAST ONE E-MAIL CONTACT-++++; [chaus weldon l
BETWEEN EMPLOYEES choperiney

cugosn ® m
v, p—-
f ‘don baughman @ unbaiey
pvioe ¥ @ sosnanio pans
o | ona s @ #uieynoren
Sehe= o ey
A .o 4T ey stacydckaon
O 4) is dorand @ shelley.coman
Qeina
e PY—
by Uy
any e @ satybock
aouiosnn ———, The analysis detected owssarng @ tensinger
4.p0mas g 4 an anomaly: a new e- ——
mail address for this .
anh s g jom oo @ person, who had been o rkbuy
o hasdcke g oting @ “phillip.allen” for 131 @ rchwd sanders
jm schvieger @ revious weeks.
clzabeth sager g Pr @ richardring
fouparis @
JRep—— ——
e oo quoet @ /) © ot
tcampbol jon.amod @ @ ppien
o
guesoerg @ ot ey @ fomes ites © pautromas
e = ®vomn
oenidnencc @ jobn e = ®mson
© v prncr
regwhaey @ L 2 ® bssiances ® mpresio
janhemange: ®
[SRp— ¢ © om dencroo @ ok causron
ra—
ames donick @ gy @ mie.gnosty B Rt gy @i
ascn witans @ v ruscrs ® e P pp—
Jason wole @ tarry may ® @ michet lokay
Iefirey hodge @ L vyl @ michote cash
oty sharkan @ ©m tomey
jeft.skilling ® © matsmn
e ® © makwnt
® murkiayr

9 pstepenciitcn ®
some communication to g ® o o @ mmbiar
subordinates. ‘ o @izt
Mred P00 e 9 r? Lo
o symas b |] et
Finding Patterns kenneth.lay M

In Corporate Chatter

.
/ \ o magn aney
b @ o n
Company leaders e-mail [o e @ markahosdd
less frequently, leavin © ratanons

© mak naoscre

Universiy

The evolution of FCC lobbying coalitions

Fred Wiliamson & Associates

® cm
Ui Systets ecass

Ouasnim Tecommiroatcns

Missoula Pan Suppeners A

Tecarios Co ons

oo Communcatons

v Jorary Cons:

RuralUsles Senvios
*._USDA

Unccinlle Networks

Odrd Tlghare wow!
N el .
:
v, YT
R oo Tk, s
Gl Crosing 3 >
AN o | SmanCey Netiork®
T8 TS N Gl Teace S
o S Vorzon— /38 it 2 ; ==
GomTie N\ g . == /
g W00 Gorentics
] 7 2
> Hpecibe ¥ i
A e > o e
. 7 G
Catsan At o=
Sk S ST & Bt e Tocem
J? / ;
Y / et el Telehone
», / N 2
Toascrc @ / e s
A\l o P
o0 . Chaner Communiaions

Eright House Netnorks. 4
y e
Citzans Telephone DC! Voics Soluions ®
* Kingeom Teleghone 2

Citcem
Z Fance of Rural CMRS Carirs .
o s Nech

“ o Nolata Commuricasens.

Lo e %
N Cocrad Celuar Sshoi Ao @) .
s, . ERTA Nebalem Teleooriintatons. Trang Cascades

e o Vi A
ot ria OG0 Moo 5
N, J

* | Baraga Telephone . .
. Soih Dakors Network
. On

. OmnTel
. —e

“The Evolution of FCC Lobbying Coalitions” by Pierre de Vries in JoSS Visualization Symposium 2010

Graph terminology

Path. Sequence of vertices connected by edges.
Cycle. Path whose first and last vertices are the same.

Two vertices are connected if there is a path between them.

vertex
lcyrlchof edge
ength 5 \
path of
« length 4
vertex of
degree 3 ™\

connected
components

Graph applications

communication telephone, computer fiber optic cable
circuit gate, register, processor wire
mechanical joint rod, beam, spring
financial stock, currency transactions
transportation street intersection, airport highway, airway route
internet class C network connection
game board position legal move
social relationship person, actor friendship, movie cast
neural network neuron synapse
protein network protein protein-protein interaction
chemical compound molecule bond

Some graph-processing problems

Path. Is there a path between s and 1?
Shortest path. What is the shortest path between s and t?

Cycle. Is there a cycle in the graph?
Euler tour. Is there a cycle that uses each edge exactly once?
Hamilton tour. Is there a cycle that uses each vertex exactly once?

Connectivity. Is there away fo connect all of the vertices?
MST. What is the best way to connect all of the vertices?

Biconnectivity. Is there a vertex whose removal disconnects the graph?

Planarity. Can you draw the graph in the plane with no crossing edges?
Graph isomorphism. Do two adjacency lists represent the same graph?

Challenge. Which of these problems are easy? difficult? intractable?

» graph API

Graph representation

Vertex representation.

* This lecture: use integers between o and v-1.

* Applications: convert between names and integers with symbol table.

Anomalies.

self-loop
/

symbol table

parallel
7

Graph representation

Graph drawing. Provides intuition about the structure of the graph.

Caveat. Intuition can be misleading.

o OO

) C®
LES

Two drawings of the same graph

Graph APT

public class Graph

Graph (int V)
Graph (In in)
void addEdge(int v, int w)
Iterable<Integer> adj(int v)
int V()
int E()

String toString()

create an empty graph with V vertices
create a graph from input stream
add an edge v-w
vertices adjacent to v
number of vertices
number of edges

string representation

In in = new In(args[0]);
Graph G = new Graph (in) ;

for (int v = 0; v < G.V(); v++)
for (int w : G.adj(w))
StdOut.println(v + "-" + w);

read graph from

—
input stream

print out each
edge (twice)

Graph APT: sample client

Graph input format.

tinyG.txt

'
S E
13« F
0

veNowLvRoUuaLOo s
=
)

In in = new In(args[0]);
Graph G = new Graph (in) ;

for (int v = 0; v < G.V(); v++)
for (int w : G.adj(w))

StdOut.println(v + "-" + w);

ava Test tinyG.txt

Set-of-edges graph representation

Maintain a list of the edges (linked list or array).

12-11

12-9
- ! re.ad graph from
input stream
- primoutgach
edge (twice)

0o 1

0 2

0 5

0 6

3 4

S5

4 5

4 6

7 8

9 10

9 11

9 12

11 12

Typical graph-processing code

compute the degree of v

public static int degree(Graph G, int v)

int degree = 0;
for (int w : G.adj(v)) degree++;
return degree;

}

compute maximum degree

public static int maxDegree(Graph G)

int max = 0;
for (int v = 0; v < G.VQ; v++)
if (degree(G, v) > max)
max = degree(G, v);
return max;

compute average degree

public static int avgDegree(Graph G)
{

return 2 * G.EQ / G.VO;

count self-loops

public static int numberOfSelfLoops(Graph G)
{

int count = 0;
for (int v = 0; v < G.VQ; v++)
for (int w : G.adj(v))
if (v == w) count++;
return count/2;

Adjacency-matrix graph representation

Maintain a two-dimensional V-by-¥ boolean array;

for each edge v-w in graph: adj[v][w] = adj[w][v] = true.

two entries

for each edge \
2

°
w

r/o o of=

6
1
]
]
0
1

© ©o ©o 0o 0o of=~

© ©o o ©o o0 KK OORWRHRO
© ©o o ©o©o 0o 00 o0 oo o R
© ©o ©o ©o©o 0o 00 o0 o o

© ©o ©o oo 0o 0K KL OO
© 0o 0o oo o0 KR R
©o oo oo oo rroowr|a

ooooHo

© o o o o

"REEN CREEREE-

M B HOOOOOOOO OO OO|e

H O oK ooooooo oo

©OHr oK oOoOoOoo oo o oo

20

Adjacency-list graph representation

Maintain vertex-indexed array of lists.

(use Bag abstraction)
e {1H5]

Bag objects

() o

representations
of the same edge

Graph representations

In practice. Use adjacency-lists representation.
* Algorithms based on iterating over vertices adjacent to v.
* Real-world graphs tend to be “sparse.”

\ huge number of vertices,
small average vertex degree

epresEEET S addledge edge between iterattle over vertices
v and w? adjacent to v?
list of edges E 1 E E
adjacency matrix V2 1 1 Y
adjacency lists E+V 1 degree(v) degree(v)

* disallows parallel edges

Adjacency-list graph representation: Java implementation

public class Graph

{
private final int V;
private Bag<Integer>[] adj;

public Graph(int V)
{
this.V = V;
adj = (Bag<Integer>[]) new Bag[V];
for (int v = 0; v < V; v++)
adj[v] = new Bag<Integer>();

public void addEdge(int v, int w)
{

adj[v].add(w) ;

adj[w] .add(v) ;

public Iterable<Integer> adj(int v)
{ return adj[v]; }

Graph representations

In practice. Use adjacency-lists representation.

adjacency lists
(use Bag data type)

create empty graph
with v vertices

add edge v-w
(parallel edges allowed)

iterator for vertices adjacent to v

* Algorithms based on iterating over vertices adjacent fo v.

* Real-world graphs tend to be “"sparse.”

\ huge number of vertices,
small average vertex degree

sparse (E=200) dense (E=1000)

Two graphs (V =50)

22

24

=

Trémaux maze exploration

Algorithm.

* Unroll a ball of string behind you.
* Mark each visited intersection and each visited passage.
* Retrace steps when no unvisited options.

Maze exploration

Maze graphs.
* Vertex = infersection.
* Edge = passage.

i e — =

i

intersection passage

Goal. Explore every intersection in the maze.

26

Trémaux maze exploration

Algorithm.

* Unroll a ball of string behind you.

* Mark each visited intersection and each visited passage.
* Retrace steps when no unvisited options.

First use? Theseus entered labyrinth to kill the monstrous Minotaur;
Ariadne held ball of string.

Claude Shannon (with Theseus mouse)

28

Maze exploration

©
r

Depth-first search

Goal. Systematically search through a graph.
Idea. Mimic maze exploration.

DFS (to visit a vertex v)

Mark v as visited.
Recursively visit all unmarked

vertices w adjacent to v.

Typical applications. [ahead]
* Find all vertices connected to a given source vertex.
* Find a path between two vertices.

Maze exploration

Design pattern for graph processing

Design pattern. Decouple graph data type from graph processing.

public class Search

Search (Graph G, int s) find vertices connected to s
boolean marked(int v) is vertex v connected to s?
int count() how many vertices connected to s?

Typical client program.

¢ Create a Graph.

* Pass the craph to a graph-processing routine, e.g., search.
* Query the graph-processing routine for information.

Search search = new Search(G, s);
for (int v = 0; v < G.V(); v++)
if (search.m?rked(v)) print all vertices
StdOut.println(v) ; connected to s

Depth-first search (warmup)

Goal. Find all vertices connected to s.
Idea. Mimic maze exploration.

Algorithm.

* Use recursion (ball of string).

¢ Mark each visited vertex.

e Return (retrace steps) when no
unvisited options.

Data structure.

* boolean[] marked to mark visited vertices.

Depth-first search properties

dfs(0)

dfs(2)
check 0

dfs(1)
check 0
check 2
1 done

dfs(3)

dfs(s)
check 3
check 0
5 done

dfs(4)
check 3
check 2
4 done
check 2
3 done
check 4
2 done
check 1
check 5
0 done

marked(] adj[]

T

K

jrp

7]
[ed]
[}
b

fpp—

[pp——

wawnEo
jrpppp——

2
0
0
5
3
3

H
34
2

Proposition. DFS marks all vertices connected to s in time proportional to the

sum of their degrees.

Pf.
e Correctness:
- if w marked, then w connected to s (why?)
- if w connected to s, then w marked
(if w unmarked, then consider last edge
on a path from s to w that goes from a
marked vertex to an unmarked one)

¢ Running time: each vertex
connected to s is visited once.

source

set of
unmarked

vertices “a

set of marked

/ vertices

no such edge
<«— can exist

Depth-first search (warmup)

public class DepthFirstSearch

{
private boolean[] marked;
public DepthFirstSearch(Graph G, int s)
{
marked = new boolean[G.V()];
dfs (G, s);
}
private void dfs(Graph G, int v)
{
marked[v] = true;
for (int w : G.adj(v))
if (!'marked[w])
dfs (G, w);
}
public boolean marked(int v)
{ return marked[v]; }
}

true if connected to s

constructor marks

y vertices connected to s

< recursive DFS does the work
client can ask whether

—

vertex Vv is connected to s

Depth-first search application: preparing for a date

AT

PREPPRING FOR A DATTE, vy
M OKAY, WHAT KINDS OF HAM. WHICH SN
WHAT SITUATIONS EMERGENCIES (ANHOPPEN? DANGEROUS? LET'S SEE....

DAY (ORN SNAKE
) GARTER SNAKE

) A) SNAKEBITE
B) LIGHTNNG STRIKE
©) FALLROM GHAR o

COPFERHEAD
(¢
: %- % {xxxzzzgg»)-x~
o,

s) b~
THE RESEARCH (OMPARING
DWGER. SNAKE VENOWS 1S SCATTERED
7 PD WOONSTENT. TLL MAKE
s/ A STREADSHEET T ORGRIZE T

xkcd

http://xked. com/761/

TMHERETOPIK BY LDy, THE INCAND
YOUUP: YOURE TAIPAN HAS THE DEADUEST
NOT DRESSED? VENOM OF ANY SNAKE!

@)
(éﬁ

T REALY NEED ToSToP
USING DEPTH-FIRST SEARCHES.

Depth-first search application: flood fill

Challenge. Flood fill (Photoshop magic wand).
Assumptions. Picture has millions to billions of pixels.

Q. How difficult?

Depth-first search application: flood fill
Change color of entire blob of neighboring red pixels to blue.

Build a grid graph.

e Vertex: pixel.

» Edge: between two adjacent red pixels.
* Blob: all pixels connected to given pixel.

recolor red blob to blue 39

Depth-first search application: flood fill
Change color of entire blob of neighboring red pixels to blue.

Build a grid graph.

* Vertex: pixel.

» Edge: between two adjacent red pixels.
* Blob: all pixels connected to given pixel.

recolor red blob to blue 38

Paths in graphs

Goal. Does there exist a path from s to ¢ ?

H I =
s “’ELLr VHLHI Sedes Sanee:
5%{485:55 et .. 1
1] b
e e

40

Paths in graphs: union-find vs. DFS

Goal. Does there exist a path from s to ¢ ?

PIEPICESSing fine

union-find V + E log* V log* V t Y

DFS E+V 1 E+V

Union-find. Can intermix queries and edge insertions.
Depth-first search. Constant time per query.

41

Pathfinding in graphs

Goal. Does there exist a path from s to ¢? If yes, find any such path.

public class Paths

Paths (Graph G, int s) find paths in G from source s

boolean hasPathTo (int v) is there a path from s to v?

Iterable<Integer> pathTo(int v) path from s to v; null if no such path

Union-find. Not much help.
Depth-first search. After linear-time preprocessing, can recover path itself
in time proportional to its length.

easy modification
(stay tuned)

43

Pathfinding in graphs

Goal. Does there exist a path from s to ¢? If yes, find any such path.

1

g

Depth-first search (pathfinding)

Goal. Find paths to all vertices connected
to a given source s.
Idea. Mimic maze exploration.

Algorithm.
* Use recursion (ball of string).
* Mark each visited vertex by keeping
* track of edge taken to visit it.
* Return (retrace steps) when
no unvisited options.

Data structures.

* boolean[] marked to mark visited vertices.

e int[] edgeTo to keep tree of paths.
* (edgeTo[w] == v) means that edge v-w
was taken to visit w the first time

dfs(0)

dfs2)
check 0

dfs(1)
check 0
check 2
1 done

dfs(3)

dfs(5)
check 3
check 0
5 done

dfs(4)
check 3
check 2

4 done

check 2

MK

N NNNH

edgeTo[]

0

42

Depth-first search (pathfinding) Depth-first search (pathfinding trace)

edgeTo[]

public class DepthFirstPaths
{

dfs(0) 0

private boolean[] marked; parent-link representation
private int[] edgeTo; “—T—— of DFStree
private final int s; tinyCG. txt standard drawing

dfs(2)

{2) check 0

v, A——
public DepthFirstPaths(Graph G, int s) ’ M
[o—C—0

marked = new boolean[G.V()];
edgeTo = new int[G.V()];

this.s = s; O; 1§2§2k :
dfs(G, s);
}

BCRT
@Z}ﬁg@

dfs(1)
drawing with both edges check 0

cwworNNO®
Nm&Hwam\

dfs(3)
private void dfs(Graph G, int v)

{ adjacency lists

marked[v] = true; \
for (int w : G.adj(v)) -\@ a
if (!marked[w]) N @_. =
~| 1

¢

{2
check 3 12
(: G e oA
edgeTo[w] = v; <«—+—— setparent link @ sis
dfs (G, w); : 2] .
} 4 i;:ikz ©, {2 12
) 5 check 2 o 20
4 done 312
et O \é i
public boolean hasPathTo (int v) P ahead , Gheck 4
public Iterable<Integer> pathTo(int v) (:E(:;
) 0 done
45
Depth-first search (pathfinding iterator) Depth-first search summary
edgeTo[] is a parent-link representation of a tree rooted at s. Enables direct solution of simple graph problems.
v * Does there exists a path between s and 1 ?
edgeloll @ V'« Find path between s and .
HE 2 * Connected components (stay tuned).
3z @ @
43 * Euler tour (see book).
513 ® O .
x path * Cycle detection (see book).
5 5 . . .
3035 * Bipartiteness checking (see book).
2 235
0 0235
Basis for solving more difficult graph problems.
public boolean hasPathTo(int v) * Biconnected components (beyond scope).
{ return marked[v]; }

* Planarity testing (beyond scope).
public Iterable<Integer> pathTo (int v)
{
if ('hasPathTo(v)) return null;
Stack<Integer> path = new Stack<Integer>();
for (int x = v; x != s; x = edgeTo[x])
path.push(x) ;
path.push(s) ;
return path;

47

» breadth-first search

Breadth-first search (pathfinding)

private void bfs(Graph G, int s)
{
Queue<Integer> q = new Queue<Integer>();
gq.enqueue (s) ;
marked[s] = true;
while ('q.isEmpty())
{
int v = gq.dequeue();
for (int w : G.adj(v))
if ('marked[w])
{
q.enqueue (w) ;
marked[w] = true;
edgeTo[w] = v;

Q=0 == @i—
f{ B <<
=0 E==0b é)—@ Q=0

@=0

)
@

o—0
e
\e

O—0
fi
E=

marked[]

0

1
2
3
4
5

B

g p——— g p—p—— jpp———— g

e ———

edgeTol]

[EFSVINTS [EFSVIE [EFSVIES wawnEo wawnRo

[EFSVINE

49

Breadth-first search

Depth-first search. Put unvisited vertices on a stack.
Breadth-first search. Put unvisited vertices on a queue.

Shortest path. Find path from s to ¢ that uses fewest number of edges.

BFS (from source vertex s)

g

Put s onto a FIFO queue, and mark s as visited.
Repeat until the queue is empty:

I

5

- remove the least recently added vertex v
- add each of v's unvisited neighbors to the queue,

and mark them as visited.

I

i

Intuition. BFS examines vertices in increasing distance from s.

Breadth-first search properties

Proposition. BFS computes shortest path (number of edges) from s
in a connected graph in time proportional to E + V.

Pf.
 Correctness: queue always consists of zero or more vertices of distance k

from s, followed by zero or more vertices of distance &+ 1.

* Running time: each vertex connected to s is visited once.

dist = 0 dist =1 dist = 2

standard drawing

Breadth-first search application: routing

Fewest number of hops in a communication network.

SATELLITE CIRCUIT
e

e
& PLURIBUS MP

(NOTE ThIS MAP DOES NOT SHOW ARPA'S EXPERINENTAL
SATELLITE CONNECTIONS)

NAMES SHOWN ARE 1MP NAMLS, NOT (NECESSARILY) HOST NAMES

ARPANET, July 1977

Kevin Bacon graph

¢ Include a vertex for each performer and for each movie.

 Connect a movie to all performers that appear in that movie.

» Compute shortest path from s = Kevin Bacon.

catigola

The Stepford
Wives

John
Gielgud
Portrait
of a Lady The Eagle
Nicole Has Landed
Kidran

Xathieen
Quintan
A Anerican
Haunting performer
/ vertex

Apoto 13]

movie
vertex
Pau
Herbert
Weryl
Streep Serretta
Kate Wilson
Winslet

Eternal Sunshing
of the SpotTess
Mind

Breadth-first search application: Kevin Bacon humbers

Kevin Bacon numbers.

800

[s)(&) ¢ =

o seoinan XS
e\
Sr

§ THE ORACLE

}‘ oF BACON

Holp
Credits

How it Works
Contact Us
Other games »

v
Be Y
3
®

Endless Games board game

ow 2 Degrees.

Uma Thurman
cted in

Be Cool (2005)
with

Scott Adsit

http:/ /oracleofbacon.org SixDegrees iPhone App
53 54
Breadth-first search application: Erdés numbers
[
{
|
[
hand-drawing of part of the Erdés graph by Ron Graham
55

» connected components

Connected components

The relation "is connected to" is an equivalence relation:

¢ Reflexive: v is connected fo v.

e Symmetric: if vis connected to w, then w is connected to v.

¢ Transitive: if v connected to w and w connected to x, then v connected to x.

Def. A connected component is a maximal set of connected vertices.

v id[v]
o L
2 0
3 0
O VW g C o
PO-Ol | Do
o S .
3 connected components 12 2
12 2

Remark. Given connected components, can answer queries in constant time.

Connectivity queries

Def. Vertices v and w are connected if there is a path between them.

Goal. Preprocess graph to answer queries: is v connected to w ?
in constant time.

public class CC
CC(Graph G) find connected components in G
boolean connected(int v, int w) are v and w connected?
int count() number of connected components
int id(int v) component identifier for v

Union-Find? Not quite.
Depth-first search. Yes. [next few slides]

Connected components

Def. A connected component is a maximal set of connected vertices.

:
5
7

Qﬁi
111
8

H

1]

113

Ssgue
11

!

8

11

It
Sift

' 11
jub
.- 11
fia

63 connected components @

Connected components

Goal. Partition vertices into connected components.

Connected components

Initialize all vertices v as unmarked.

For each unmarked vertex v, run DFS to identify all
vertices discovered as part of the same component.

tinyG. txt
V\13
13«

Finding connected components with DFS (continued)

public int count()
{ return count; }

public int id(int v)
{ return id[v]; }

private void dfs(Graph G, int v)
{
marked[v] = true;
id[v] = count;
for (int w : G.adj(v))
if ('marked[w])
dfs (G, w);

NA DR R WY
N

NONOoOWVHOUO WO O
(=

W oo

61

number of connected components

id of component containing v

all vertices discovered in
same call of dfs have same id

63

Finding connected components with DFS

public class CC

{
private boolean marked[];
private int[] id;
private int count;

public CC(Graph G)
{
marked = new boolean[G.V()];
id = new int[G.V()];
for (int v = 0; v < G.V(); v++)
{
if ('marked([v])
{
dfs (G, v);
count++;

public int count()
public int id(int v)
private void dfs(Graph G, int v)

Finding connected components with DFS (frace)

count marked[]

id[v] = id of component containing v
number of connected
components

run DFS from one vertex in
each component

see next slide

id[]

01234567 89101112 0

dfs(0) 0
dfs(6) 0
check 0
dfs(4) 0
dfs(5) 0
dfs(3) 0
check 5
check 4
3 done
check 4
check 0
5 done
check 6
check 3
4 done
6 done
dfs(2) o T
check 0
2 done
dfs(1) 0
check 0
1 done
check 5
0 done

44
.

44
— =
-

— -

©
()
9'@ ?
° O ® coo oo

0‘00 ©
e

TTTTT

TTTTTTT

1

0000000

234567 89101112

=]

o oo
ocoo

00000

62

64

Finding connected components with DFS (trace) Connected components application: study spread of STDs

etae
count marked[] id[] A \'3;/ /
01234567 89101112 0123456 7 8 9101112 }‘\';/*“’q
0 done - X \J" 1o]
dfs(7) 1 TTTTTTTT 00000001 it :, ¥, ' ket S ./i'\.
dfs(8) 1 TTTTTTTTT 000000011 R o B =T i~ =1 7’%_,'_(5 > AN\
check 7 B4 K LRSS er S
8 done T34 = *‘g*
7 done e b »
Y Sl UL 8
dfs(9) 2 TTTTTTTTTT 0000000112 v o A TR
dfs(11) 2 TTTTTTTTTT T 0000000112 2 (" Lo S M ey gy
check 9 ,,/:\ a4 oo R I
dfs(12) 2 TTTTTTTTTT TT 0000000112 22 / Y /z\
check 11 _\/ \< P
check 9 7/ \ I " 5
12 done -\<' \ AN \/ \/
11 done \\ /
dfs(10) 2 TTTTTTTTTTTTT 0000000112222 -
check 9 \, — .
10 done (\ &
check 12 3 et
9 done O ® \ -
O
. o 9\® Relationship graph at "Jefferson High"
O, 1)
Peter Bearman, James Moody, and Katherine Stovel. Chains of affection: The structure of
adolescent romantic and sexual networks. American Journal of Sociology, 110(1): 44-99, 2004.

65 66

Connected components application: particle detection

Particle detection. Given grayscale image of particles, identify "blobs."
e Vertex: pixel.

* Edge: between two adjacent pixels with grayscale value = 70.
* Blob: connected component of 20-30 pixels.

black = 0
white = 255

» challeng

Particle tracking. Track moving particles over time.

67 68

Graph-processing challenge 1

Problem. Is a graph bipartite?

How difficult?
* Any COS 126 student could do it.

* Need to be a typical diligent COS 226 student.

 Hire an expert.
¢ Intractable.

* No one knows.
* Impossible.

Graph-processing challenge 2

Problem. Find a cycle.

How difficult?
Any COS 126 student could do it.

* Need to be a typical diligent COS 226 student.

 Hire an expert.
¢ Intractable.

* No one knows.
* Impossible.

& B NMNNH OO OO

oOUEs WWwo N K

& B NNMHOOOO

OU e WWo UN R

& B NMNNHOOOO

oOUe WWwo N K

Bipartiteness application

te
NI
Wt &8 /
~ . SNIF b
(¥ Y
L o TN 4 £ LS R
. & /*"]“'ﬁz*\y:\/ﬁ_,'_g\f*‘ N /\
—d -
s L0 S N
S e i &
o B D ol " o, .
‘ e V]
’An'i\ —— T/ A
/ PAEINY
X
: \ N/
\ 7\ ’ \ A4
S g
N \ (\ — "
S § L

Relationship graph at "Jefferson High"

Peter Bearman, James Moody, and Katherine Stovel. Chains of affection: The structure of
adolescent romantic and sexual networks. American Journal of Sociology, 110(1): 44-99, 2004.

Graph-processing challenge 3

Problem. Find a cycle that uses every edge.
Assumption. Need to use each edge exactly once.

0-1
0-2
0-5
0-6
How difficult? 1-2
2-3
* Any COS 126 student could do it. 2-4
* Need to be a typical diligent COS 226 student. i:;
* Hire an expert. 0-1-2-3-4-2-0-6-4-5-0 4-6

Intractable.
» No one knows.

Impossible.

Bridges of Kohigsberg Graph-processing challenge 4

The Seven Bridges of Konigsberg. [Leonhard Euler 1736] Problem. Find a cycle that visits every vertex.
Assumption. Need to visit each vertex exactly once.

“...in Konigsberg in Prussia, there is an island A, called the

Kneiphof; the river which surrounds it is divided into two branches ... o
and these branches are crossed by seven bridges. Concerning these o e o

bridges, it was asked whether anyone could arrange a route in such a .
How difficult?

* Any COS 126 student could do it. yo
O

* Need to be a typical diligent COS 226 student.

way that he could cross each bridge once and only once.”

y * Hire an expert. 0-5-3-4-6-2-1-0
A o Intractable.
* No one knows.
° * Impossible.
Euler tour. Is there a (general) cycle that uses each edge exactly once?
Answer. Yes iff connected and all vertices have even degree.
To find path. DFS-based algorithm (see textbook).
7
Graph-processing challenge 5 Graph-processing challenge 6
Problem. Are two graphs identical except for vertex names? Problem. Lay out a graph in the plane without crossing edges?
o 0-1
0-2
® ® W o
How difficult? 3-4 How difficult?
e Any COS 126 student could do it. yo ::: * Any COS 126 student could do it.
* Need to be a typical diligent COS 226 student. O 46 * Need to be a typical diligent COS 226 student.
 Hire an expert. * Hire an expert.
* Intractable. G) B * Intractable. @
* No one knows. (@) = * No one knows.
» Impossible. (4) _ * Impossible. (1) (@) Te)

e!se

0<>4, 1«3, 2<>2, 3<6, 4<>5, 5<0, 6<1

UVWNRFRKFEOOO
|
L R C I W

75

BB WWNHOOOoOOo

oA NGO UNKR

& A WWwo o oo

ouu s oU N R

