
Algorithms, 4th Edition · Robert Sedgewick and Kevin Wayne · Copyright © 2002–2010 · March 1, 2011 9:11:50 PM

3.4 Hash Tables

‣ hash functions
‣ separate chaining
‣ linear probing
‣ applications

2

Optimize judiciously

Reference: Effective Java by Joshua Bloch

“ More computing sins are committed in the name of efficiency
 (without necessarily achieving it) than for any other single reason—
 including blind stupidity. ” — William A. Wulf

“ We should forget about small efficiencies, say about 97% of the time:
 premature optimization is the root of all evil. ” — Donald E. Knuth

“ We follow two rules in the matter of optimization:
 Rule 1: Don't do it.
 Rule 2 (for experts only). Don't do it yet - that is, not until
 you have a perfectly clear and unoptimized solution. ” — M. A. Jackson

ST implementations: summary

Q. Can we do better?
A. Yes, but with different access to the data.

3

implementation

guaranteeguaranteeguarantee average caseaverage caseaverage case
ordered

iteration?
operations

on keys
implementation

search insert delete search hit insert delete
iteration? on keys

sequential search
(linked list)

N N N N/2 N N/2 no equals()

binary search
(ordered array)

lg N N N lg N N/2 N/2 yes compareTo()

BST N N N 1.38 lg N 1.38 lg N ? yes compareTo()

red-black tree 2 lg N 2 lg N 2 lg N 1.00 lg N 1.00 lg N 1.00 lg N yes compareTo()

4

Hashing: basic plan

Save items in a key-indexed table (index is a function of the key).

Hash function. Method for computing array index from key.

Issues.

• Computing the hash function.

• Equality test: Method for checking whether two keys are equal.

hash("it") = 3

0

1

2

3 "it"

4

5

5

Hashing: basic plan

Save items in a key-indexed table (index is a function of the key).

Hash function. Method for computing array index from key.

Issues.

• Computing the hash function.

• Equality test: Method for checking whether two keys are equal.

• Collision resolution: Algorithm and data structure
to handle two keys that hash to the same array index.

Classic space-time tradeoff.

• No space limitation: trivial hash function with key as index.

• No time limitation: trivial collision resolution with sequential search.

• Space and time limitations: hashing (the real world).

hash("times") = 3

??

0

1

2

3 "it"

4

5

hash("it") = 3

6

‣ hash functions
‣ separate chaining
‣ linear probing
‣ applications

7

Computing the hash function

Idealistic goal. Scramble the keys uniformly to produce a table index.

• Efficiently computable.

• Each table index equally likely for each key.

Ex 1. Phone numbers.

• Bad: first three digits.

• Better: last three digits.

Ex 2. Social Security numbers.

• Bad: first three digits.

• Better: last three digits.

Practical challenge. Need different approach for each key type.

573 = California, 574 = Alaska
(assigned in chronological order within geographic region)

thoroughly researched problem,
still problematic in practical applications

key

table
index

8

Java’s hash code conventions

All Java classes inherit a method hashCode(), which returns a 32-bit int.

Requirement. If x.equals(y), then (x.hashCode() == y.hashCode()).

Highly desirable. If !x.equals(y), then (x.hashCode() != y.hashCode()).

Default implementation. Memory address of x.
Trivial (but poor) implementation. Always return 17.
Customized implementations. Integer, Double, String, File, URL, Date, …
User-defined types. Users are on their own.

x.hashCode()

x

y.hashCode()

y

9

Implementing hash code: integers, booleans, and doubles

public final class Integer
{
 private final int value;
 ...

 public int hashCode()
 { return value; }
}

convert to IEEE 64-bit representation;
xor most significant 32-bits
with least significant 32-bits

public final class Double
{
 private final double value;
 ...

 public int hashCode()
 {
 long bits = doubleToLongBits(value);
 return (int) (bits ^ (bits >>> 32));
 }
}

public final class Boolean
{
 private final boolean value;
 ...

 public int hashCode()
 {
 if (value) return 1231;
 else return 1237;
 }
}

• Horner's method to hash string of length L: L multiplies/adds.

• Equivalent to h = 31L–1 ! s0 + … + 312 ! sL–3 + 311 ! sL–2 + 310 ! sL–1.

Ex.

public final class String
{
 private final char[] s;
 ...

 public int hashCode()
 {
 int hash = 0;
 for (int i = 0; i < length(); i++)
 hash = s[i] + (31 * hash);
 return hash;
 }
}

10

Implementing hash code: strings

3045982 = 99·313 + 97·312 + 108·311 + 108·310

 = 108 + 31· (108 + 31 · (97 + 31 · (99)))

ith character of s

String s = "call";
int code = s.hashCode();

char Unicode

… …

'a' 97

'b' 98

'c' 99

… ...

String hashCode() in Java 1.1.

• For long strings: only examine 8-9 evenly spaced characters.

• Benefit: saves time in performing arithmetic.

• Downside: great potential for bad collision patterns.

11

War story: String hashing in Java

public int hashCode()
{
 int hash = 0;
 int skip = Math.max(1, length() / 8);
 for (int i = 0; i < length(); i += skip)
 hash = s[i] + (37 * hash);
 return hash;
}

http://www.cs.princeton.edu/introcs/13loop/Hello.java
http://www.cs.princeton.edu/introcs/13loop/Hello.class
http://www.cs.princeton.edu/introcs/13loop/Hello.html
http://www.cs.princeton.edu/introcs/12type/index.html

12

Implementing hash code: user-defined types

public final class Transaction
{
 private final long who;
 private final Date when;
 private final String where;

 public Transaction(long who, Date when, String where)
 { /* as before */ }

 ...

 public boolean equals(Object y)
 { /* as before */ }

 public int hashCode()
 {
 int hash = 17;
 hash = 31*hash + ((Long) val).hashCode();
 hash = 31*hash + when.hashCode();
 hash = 31*hash + where.hashCode();
 return hash;
 }
} typically a small prime

nonzero constant
for primitive types,
use hashCode()
of wrapper type

for reference types,
use hashCode()

13

Hash code design

"Standard" recipe for user-defined types.

• Combine each significant field using the 31x + y rule.

• If field is a primitive type, use wrapper type hashCode().

• If field is an array, apply to each element.

• If field is a reference type, use hashCode().

In practice. Recipe works reasonably well; used in Java libraries.
In theory. Need a theorem for each type to ensure reliability.

Basic rule. Need to use the whole key to compute hash code;
consult an expert for state-of-the-art hash codes.

or use Arrays.deepHashCode()

applies rule recursively

Hash code. An int between -231 and 231-1.
Hash function. An int between 0 and M-1 (for use as array index).

14

Modular hashing

typically a prime or power of 2

 private int hash(Key key)
 { return key.hashCode() % M; }

bug

 private int hash(Key key)
 { return Math.abs(key.hashCode()) % M; }

1-in-a-billion bug

 private int hash(Key key)
 { return (key.hashCode() & 0x7fffffff) % M; }

correct

hashCode() of "polygenelubricants" is -231

15

Uniform hashing assumption

Uniform hashing assumption. Each key is equally likely to hash to an integer
between 0 and M - 1.

Bins and balls. Throw balls uniformly at random into M bins.

Birthday problem. Expect two balls in the same bin after ~ ! M / 2 tosses.

Coupon collector. Expect every bin has " 1 ball after ~ M ln M tosses.

Load balancing. After M tosses, expect most loaded bin has
(log M / log log M) balls.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16

Uniform hashing assumption

Uniform hashing assumption. Each key is equally likely to hash to an integer
between 0 and M - 1.

Bins and balls. Throw balls uniformly at random into M bins.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Hash value frequencies for words in Tale of Two Cities (M = 97)

Java's String data uniformly distribute the keys of Tale of Two Cities

17

‣ hash functions
‣ separate chaining
‣ linear probing
‣ applications

18

Collisions

Collision. Two distinct keys hashing to same index.

• Birthday problem $ can't avoid collisions unless you have
a ridiculous (quadratic) amount of memory.

• Coupon collector + load balancing $ collisions will be evenly distributed.

Challenge. Deal with collisions efficiently.

hash("times") = 3

??

0

1

2

3 "it"

4

5

hash("it") = 3

Use an array of M < N linked lists. [H. P. Luhn, IBM 1953]

• Hash: map key to integer i between 0 and M - 1.

• Insert: put at front of ith chain (if not already there).

• Search: only need to search ith chain.

19

Separate chaining ST

Hashing with separate chaining for standard indexing client

st

first

0

1

2

3

4

S 0X 7

E 12

first

first

first

first

A 8

P 10L 11

R 3C 4H 5M 9

independent
SequentialSearchST

objects

S 2 0

E 0 1

A 0 2

R 4 3

C 4 4

H 4 5

E 0 6

X 2 7

A 0 8

M 4 9

P 3 10

L 3 11

E 0 12

null

key hash value

public class SeparateChainingHashST<Key, Value>
{
 private int N; // number of key-value pairs
 private int M; // hash table size
 private SequentialSearchST<Key, Value> [] st; // array of STs

 public SeparateChainingHashST()
 { this(997); }

 public SeparateChainingHashST(int M)
 {
 this.M = M;
 st = (SequentialSearchST<Key, Value>[]) new SequentialSearchST[M];
 for (int i = 0; i < M; i++)
 st[i] = new SequentialSearchST<Key, Value>();
 }
 private int hash(Key key)
 { return (key.hashCode() & 0x7fffffff) % M; }

 public Value get(Key key)
 { return st[hash(key)].get(key); }

 public void put(Key key, Value val)
 { st[hash(key)].put(key, val); }
}

Separate chaining ST: Java implementation

20

array doubling and halving code omitted

Proposition. Under uniform hashing assumption, probability that the number
of keys in a list is within a constant factor of N / M is extremely close to 1.

Pf sketch. Distribution of list size obeys a binomial distribution.

Consequence. Number of probes for search/insert is proportional to N / M.

• M too large $ too many empty chains.

• M too small $ chains too long.

• Typical choice: M ~ N / 5 $ constant-time ops.
21

Analysis of separate chaining

M times faster than
sequential search

equals() and hashCode()

Binomial distribution (N = 104 , M = 103 , ! = 10)

.125

0

0 10 20 30

(10, .12511...)

ST implementations: summary

22

implementation

guaranteeguaranteeguarantee average caseaverage caseaverage case
ordered operations

implementation

search insert delete search hit insert delete
iteration? on keys

sequential search
(linked list)

N N N N/2 N N/2 no equals()

binary search
(ordered array)

lg N N N lg N N/2 N/2 yes compareTo()

BST N N N 1.38 lg N 1.38 lg N ? yes compareTo()

red-black tree 2 lg N 2 lg N 2 lg N 1.00 lg N 1.00 lg N 1.00 lg N yes compareTo()

separate chaining lg N * lg N * lg N * 3-5 * 3-5 * 3-5 * no equals()

* under uniform hashing assumption

23

‣ hash functions
‣ separate chaining
‣ linear probing
‣ applications

Open addressing. [Amdahl-Boehme-Rocherster-Samuel, IBM 1953]
When a new key collides, find next empty slot, and put it there.

24

Collision resolution: open addressing

null

null

linear probing (M = 30001, N = 15000)

jocularly

listen

suburban

browsing

st[0]

st[1]

st[2]

st[30000]

st[3]

Use an array of size M > N.

• Hash: map key to integer i between 0 and M - 1.

• Insert: put at table index i if free; if not try i + 1, i + 2, etc.

• Search: search table index i; if occupied but no match, try i + 1, i + 2, etc.

25

Linear probing

- - - S H - - A C E R - -

0 1 2 3 4 5 6 7 8 9 10 11 12

insert I
hash(I) = 11- - - S H - - A C E R I -

0 1 2 3 4 5 6 7 8 9 10 11 12

insert N
hash(N) = 8- - - S H - - A C E R I N

0 1 2 3 4 5 6 7 8 9 10 11 12

26

Linear probing: trace of standard indexing client

0 1 2 3 4 5 6 7 8 9
 S
 0
 S E
 0 1
 A S E
 2 0 1
 A S E R
 2 0 1 3
 A C S E R
 2 5 0 1 3
 A C S H E R
 2 5 0 5 1 3
 A C S H E R
 2 5 0 5 6 3
 A C S H E R X
 2 5 0 5 6 3 7
 A C S H E R X
 8 5 0 5 6 3 7
 M A C S H E R X
 9 8 5 0 5 6 3 7
P M A C S H E R X
 9 8 5 0 5 6 3 7
P M A C S H L E R X
 9 8 5 0 5 6 3 7
P M A C S H L E R X
 9 8 5 0 5 3 7

10 11 12 13 14 15

11 12

1110

10

10

Trace of linear-probing ST implementation for standard indexing client

entries in gray
are untouched

probe sequence
wraps to 0

entries in red
are new

keys in black
are probes

S 6 0

E 10 1

A 4 2

R 14 3

C 5 4

H 4 5

E 10 6

X 15 7

A 4 8

M 1 9

P 14 10

L 6 11

E 10 12 keys[]
vals[]

key hash value

public class LinearProbingHashST<Key, Value>
{
 private int M = 30001;
 private Value[] vals = (Value[]) new Object[M];
 private Key[] keys = (Key[]) new Object[M];

 private int hash(Key key) { /* as before */ }

 public void put(Key key, Value val)
 {
 int i;
 for (i = hash(key); keys[i] != null; i = (i+1) % M)
 if (keys[i].equals(key))
 break;
 keys[i] = key;
 vals[i] = val;
 }

 public Value get(Key key)
 {
 for (int i = hash(key); keys[i] != null; i = (i+1) % M)
 if (key.equals(keys[i]))
 return vals[i];
 return null;
 }
}

Linear probing ST implementation

27

array doubling
and halving

code omitted

Cluster. A contiguous block of items.
Observation. New keys likely to hash into middle of big clusters.

28

Clustering

Model. Cars arrive at one-way street with M parking spaces.
Each desires a random space i : if space i is taken, try i + 1, i + 2, etc.

Q. What is mean displacement of a car?

Half-full. With M / 2 cars, mean displacement is ~ 3 / 2.
Full. With M cars, mean displacement is ~ ! M / 8

29

Knuth's parking problem

displacement = 3

Proposition. Under uniform hashing assumption, the average number of
probes in a hash table of size M that contains N = % M keys is:

Pf. [Knuth 1962] A landmark in analysis of algorithms.

Parameters.

• M too large $ too many empty array entries.

• M too small $ search time blows up.

• Typical choice: % = N / M ~ ".

30

Analysis of linear probing

∼ 1
2

�
1 +

1
1− α

�
∼ 1

2

�
1 +

1
(1− α)2

�

search hit search miss / insert

probes for search hit is about 3/2
probes for search miss is about 5/2

ST implementations: summary

31

implementation

guaranteeguaranteeguarantee average caseaverage caseaverage case
ordered operations

implementation

search insert delete search hit insert delete
iteration? on keys

sequential search
(linked list)

N N N N/2 N N/2 no equals()

binary search
(ordered array)

lg N N N lg N N/2 N/2 yes compareTo()

BST N N N 1.38 lg N 1.38 lg N ? yes compareTo()

red-black tree 2 lg N 2 lg N 2 lg N 1.00 lg N 1.00 lg N 1.00 lg N yes compareTo()

separate chaining lg N * lg N * lg N * 3-5 * 3-5 * 3-5 * no equals()

linear probing lg N * lg N * lg N * 3-5 * 3-5 * 3-5 * no equals()

* under uniform hashing assumption

32

War story: algorithmic complexity attacks

Q. Is the uniform hashing assumption important in practice?
A. Obvious situations: aircraft control, nuclear reactor, pacemaker.
A. Surprising situations: denial-of-service attacks.

Real-world exploits. [Crosby-Wallach 2003]

• Bro server: send carefully chosen packets to DOS the server,
using less bandwidth than a dial-up modem.

• Perl 5.8.0: insert carefully chosen strings into associative array.

• Linux 2.4.20 kernel: save files with carefully chosen names.

malicious adversary learns your hash function
(e.g., by reading Java API) and causes a big pile-up

in single slot that grinds performance to a halt

Goal. Find family of strings with the same hash code.
Solution. The base-31 hash code is part of Java's string API.

33

Algorithmic complexity attack on Java

2N strings of length 2N that hash to same value!

key hashCode()

"AaAaAaAa" -540425984

"AaAaAaBB" -540425984

"AaAaBBAa" -540425984

"AaAaBBBB" -540425984

"AaBBAaAa" -540425984

"AaBBAaBB" -540425984

"AaBBBBAa" -540425984

"AaBBBBBB" -540425984

key hashCode()

"BBAaAaAa" -540425984

"BBAaAaBB" -540425984

"BBAaBBAa" -540425984

"BBAaBBBB" -540425984

"BBBBAaAa" -540425984

"BBBBAaBB" -540425984

"BBBBBBAa" -540425984

"BBBBBBBB" -540425984

key hashCode()

"Aa" 2112

"BB" 2112

34

Diversion: one-way hash functions

One-way hash function. "Hard" to find a key that will hash to a desired value
(or two keys that hash to same value).

Ex. MD4, MD5, SHA-0, SHA-1, SHA-2, WHIRLPOOL, RIPEMD-160, ….

Applications. Digital fingerprint, message digest, storing passwords.
Caveat. Too expensive for use in ST implementations.

known to be insecure

String password = args[0];
MessageDigest sha1 = MessageDigest.getInstance("SHA1");
byte[] bytes = sha1.digest(password);

/* prints bytes as hex string */

Separate chaining vs. linear probing

Separate chaining.

• Easier to implement delete.

• Performance degrades gracefully.

• Clustering less sensitive to poorly-designed hash function.

Linear probing.

• Less wasted space.

• Better cache performance.

35

Hashing: variations on the theme

Many improved versions have been studied.

Two-probe hashing. (separate-chaining variant)

• Hash to two positions, put key in shorter of the two chains.

• Reduces expected length of the longest chain to log log N.

Double hashing. (linear-probing variant)

• Use linear probing, but skip a variable amount, not just 1 each time.

• Effectively eliminates clustering.

• Can allow table to become nearly full.

• Difficult to implement delete.

36

Memory usage for ST implementations

Separate chaining

• N nodes (each 24 bytes overhead plus three 8-byte references)

• M nodes (each 24 bytes overhead plus one 8-byte reference)

• Total: ~48N + 32M = ~54.4N bytes for recommended M = N/5

Linear probing

• 2N references if 1/2 full

• 8N references if 1/8 full

• Total: between ~32N and ~128N bytes

Binary search trees

• N nodes (each 24 bytes overhead plus four 8-byte references)

• Total: ~56N bytes

Bottom line: Memory usage not decisive in reference implementations

37

Hashing vs. balanced search trees

Hashing.

• Simpler to code.

• No effective alternative for unordered keys.

• Faster for simple keys (a few arithmetic ops versus log N compares).

• Better system support in Java for strings (e.g., cached hash code).

• Not easy to implement equals() and hashCode() correctly.

Balanced search trees.

• Stronger performance guarantee.

• Support for ordered ST operations.

• Faster for complicated keys (compare vs. arithmetic ops on whole key)

• Not difficult to implement compareTo() correctly.

Java system includes both.

• Red-black trees: java.util.TreeMap, java.util.TreeSet.

• Hashing: java.util.HashMap, java.util.IdentityHashMap.
38

Algorithms, 4th Edition · Robert Sedgewick and Kevin Wayne · Copyright © 2002–2010 · March 1, 2011 9:13:07 PM

3.5 Symbol Table Applications

‣ sets
‣ dictionary clients
‣ indexing clients
‣ sparse vectors
‣ geometric applications

2

‣ sets
‣ dictionary clients
‣ indexing clients
‣ sparse vectors

3

Set API

Mathematical set. A collection of distinct keys.

Q. How to implement?

 public class SET<Key extends Comparable<Key>> public class SET<Key extends Comparable<Key>> public class SET<Key extends Comparable<Key>>

SET() create an empty set

void add(Key key) add the key to the set

boolean contains(Key key) is the key in the set?

void remove(Key key) remove the key from the set

int size() return the number of keys in the set

Iterator<Key> iterator() iterator through keys in the set

• Read in a list of words from one file.

• Print out all words from standard input that are { in, not in } the list.

4

Exception filter

% more list.txt
was it the of

% java WhiteList list.txt < tinyTale.txt
it was the of it was the of
it was the of it was the of
it was the of it was the of
it was the of it was the of
it was the of it was the of

% java BlackList list.txt < tinyTale.txt
best times worst times
age wisdom age foolishness
epoch belief epoch incredulity
season light season darkness
spring hope winter despair

list of exceptional words

• Read in a list of words from one file.

• Print out all words from standard input that are { in, not in } the list.

5

Exception filter applications

application purpose key in list

spell checker identify misspelled words word dictionary words

browser mark visited pages URL visited pages

parental controls block sites URL bad sites

chess detect draw board positions

spam filter eliminate spam IP address spam addresses

credit cards check for stolen cards number stolen cards

• Read in a list of words from one file.

• Print out all words from standard input that are { in, not in } the list.

6

Exception filter: Java implementation

public class WhiteList
{
 public static void main(String[] args)
 {
 SET<String> set = new SET<String>();

 In in = new In(args[0]);
 while (!in.isEmpty())
 set.add(in.readString());

 while (!StdIn.isEmpty())
 {
 String word = StdIn.readString();
 if (set.contains(word))
 StdOut.println(word);
 }
 }
}

create empty set of strings

read in whitelist

print words in list

• Read in a list of words from one file.

• Print out all words from standard input that are { in, not in } the list.

7

Exception filter: Java implementation

public class BlackList
{
 public static void main(String[] args)
 {
 SET<String> set = new SET<String>();

 In in = new In(args[0]);
 while (!in.isEmpty())
 set.add(in.readString());

 while (!StdIn.isEmpty())
 {
 String word = StdIn.readString();
 if (!set.contains(word))
 StdOut.println(word);
 }
 }
}

create empty set of strings

read in blacklist

print words not in list

8

‣ sets
‣ dictionary clients
‣ indexing clients
‣ sparse vectors

Dictionary lookup

Command-line arguments.

• A comma-separated value (CSV) file.

• Key field.

• Value field.

Ex 1. DNS lookup.

9

% more ip.csv
www.princeton.edu,128.112.128.15
www.cs.princeton.edu,128.112.136.35
www.math.princeton.edu,128.112.18.11
www.cs.harvard.edu,140.247.50.127
www.harvard.edu,128.103.60.24
www.yale.edu,130.132.51.8
www.econ.yale.edu,128.36.236.74
www.cs.yale.edu,128.36.229.30
espn.com,199.181.135.201
yahoo.com,66.94.234.13
msn.com,207.68.172.246
google.com,64.233.167.99
baidu.com,202.108.22.33
yahoo.co.jp,202.93.91.141
sina.com.cn,202.108.33.32
ebay.com,66.135.192.87
adobe.com,192.150.18.60
163.com,220.181.29.154
passport.net,65.54.179.226
tom.com,61.135.158.237
nate.com,203.226.253.11
cnn.com,64.236.16.20
daum.net,211.115.77.211
blogger.com,66.102.15.100
fastclick.com,205.180.86.4
wikipedia.org,66.230.200.100
rakuten.co.jp,202.72.51.22
...

% java LookupCSV ip.csv 0 1
adobe.com
192.150.18.60
www.princeton.edu
128.112.128.15
ebay.edu
Not found

% java LookupCSV ip.csv 1 0
128.112.128.15
www.princeton.edu
999.999.999.99
Not found

URL is key IP is value

IP is key URL is value

Dictionary lookup

Command-line arguments.

• A comma-separated value (CSV) file.

• Key field.

• Value field.

Ex 2. Amino acids.

10

% more amino.csv
TTT,Phe,F,Phenylalanine
TTC,Phe,F,Phenylalanine
TTA,Leu,L,Leucine
TTG,Leu,L,Leucine
TCT,Ser,S,Serine
TCC,Ser,S,Serine
TCA,Ser,S,Serine
TCG,Ser,S,Serine
TAT,Tyr,Y,Tyrosine
TAC,Tyr,Y,Tyrosine
TAA,Stop,Stop,Stop
TAG,Stop,Stop,Stop
TGT,Cys,C,Cysteine
TGC,Cys,C,Cysteine
TGA,Stop,Stop,Stop
TGG,Trp,W,Tryptophan
CTT,Leu,L,Leucine
CTC,Leu,L,Leucine
CTA,Leu,L,Leucine
CTG,Leu,L,Leucine
CCT,Pro,P,Proline
CCC,Pro,P,Proline
CCA,Pro,P,Proline
CCG,Pro,P,Proline
CAT,His,H,Histidine
CAC,His,H,Histidine
CAA,Gln,Q,Glutamine
CAG,Gln,Q,Glutamine
CGT,Arg,R,Arginine
CGC,Arg,R,Arginine
...

% java LookupCSV amino.csv 0 3
ACT
Threonine
TAG
Stop
CAT
Histidine

codon is key name is value

Dictionary lookup

Command-line arguments.

• A comma-separated value (CSV) file.

• Key field.

• Value field.

Ex 3. Class list.

11

% more classlist.csv
13,Berl,Ethan Michael,P01,eberl
11,Bourque,Alexander Joseph,P01,abourque
12,Cao,Phillips Minghua,P01,pcao
11,Chehoud,Christel,P01,cchehoud
10,Douglas,Malia Morioka,P01,malia
12,Haddock,Sara Lynn,P01,shaddock
12,Hantman,Nicole Samantha,P01,nhantman
11,Hesterberg,Adam Classen,P01,ahesterb
13,Hwang,Roland Lee,P01,rhwang
13,Hyde,Gregory Thomas,P01,ghyde
13,Kim,Hyunmoon,P01,hktwo
11,Kleinfeld,Ivan Maximillian,P01,ikleinfe
12,Korac,Damjan,P01,dkorac
11,MacDonald,Graham David,P01,gmacdona
10,Michal,Brian Thomas,P01,bmichal
12,Nam,Seung Hyeon,P01,seungnam
11,Nastasescu,Maria Monica,P01,mnastase
11,Pan,Di,P01,dpan
12,Partridge,Brenton Alan,P01,bpartrid
13,Rilee,Alexander,P01,arilee
13,Roopakalu,Ajay,P01,aroopaka
11,Sheng,Ben C,P01,bsheng
12,Webb,Natalie Sue,P01,nwebb
...

% java LookupCSV classlist.csv 4 1
eberl
Ethan
nwebb
Natalie

% java LookupCSV classlist.csv 4 3
dpan
P01

login is key
first name

is value

login is key
precept
is value

public class LookupCSV
{
 public static void main(String[] args)
 {
 In in = new In(args[0]);
 int keyField = Integer.parseInt(args[1]);
 int valField = Integer.parseInt(args[2]);

 ST<String, String> st = new ST<String, String>();
 while (!in.isEmpty())
 {
 String line = in.readLine();
 String[] tokens = database[i].split(",");
 String key = tokens[keyField];
 String val = tokens[valField];
 st.put(key, val);
 }

 while (!StdIn.isEmpty())
 {
 String s = StdIn.readString();
 if (!st.contains(s)) StdOut.println("Not found");
 else StdOut.println(st.get(s));
 }
 }
}

12

Dictionary lookup: Java implementation

process input file

build symbol table

process lookups
with standard I/O

13

‣ sets
‣ dictionary clients
‣ indexing clients
‣ sparse vectors

Goal. Index a PC (or the web).

File indexing

14

Goal. Given a list of files specified as command-line arguments, create an
index so that can efficiently find all files containing a given query string.

Solution. Key = query string; value = set of files containing that string.
15

File indexing

% ls *.txt
aesop.txt magna.txt moby.txt
sawyer.txt tale.txt

% java FileIndex *.txt
freedom
magna.txt moby.txt tale.txt

whale
moby.txt

lamb
sawyer.txt aesop.txt

% ls *.java

% java FileIndex *.java
BlackList.java Concordance.java
DeDup.java FileIndex.java ST.java
SET.java WhiteList.java

import
FileIndex.java SET.java ST.java

Comparator
null

public class FileIndex
{
 public static void main(String[] args)
 {
 ST<String, SET<File>> st = new ST<String, SET<File>>();

 for (String filename : args) {
 File file = new File(filename);
 In in = new In(file);
 while !(in.isEmpty())
 {
 String word = in.readString();
 if (!st.contains(word))
 st.put(s, new SET<File>());
 SET<File> set = st.get(key);
 set.add(file);
 }
 }

 while (!StdIn.isEmpty())
 {
 String query = StdIn.readString();
 StdOut.println(st.get(query));
 }
 }
}

File indexing

16

for each word in file,
add file to

corresponding set

list of file names
from command line

process queries

symbol table

Keyword-in-context search

Goal. Preprocess a text to support KWIC queries: given a word, find all
occurrences with their immediate contexts.

17

% java KWIC tale.txt
cities
tongues of the two *cities* that were blended in

majesty
their turnkeys and the *majesty* of the law fired
me treason against the *majesty* of the people in
 of his most gracious *majesty* king george the third

princeton
no matches

public class KWIC
{
 public static void main(String[] args)
 {
 In in = new In(args[0]);
 String[] words = StdIn.readAll().split("\\s+");
 ST<String, SET<Integer>> st = new ST<String, SET<Integer>>();
 for (int i = 0; i < words.length; i++)
 {
 String s = words[i];
 if (!st.contains(s))
 st.put(s, new SET<Integer>());
 SET<Integer> pages = st.get(s);
 set.put(i);
 }

 while (!StdIn.isEmpty())
 {
 String query = StdIn.readString();
 SET<Integer> set = st.get(query);
 for (int k : set)
 // print words[k-5] to words[k+5]
 }
 }
}

KWIC

18

read text and
build index

process queries
and print matches

19

‣ sets
‣ dictionary clients
‣ indexing clients
‣ sparse vectors

Matrix-vector multiplication (standard implementation)

20

...
double[][] a = new double[N][N];
double[] x = new double[N];
double[] b = new double[N];
...
// initialize a[][] and x[]
...
for (int i = 0; i < N; i++)
{
 sum = 0.0;
 for (int j = 0; j < N; j++)
 sum += a[i][j]*x[j];
 b[i] = sum;
}

nested loops
(N2 running time)

 0 .90 0 0 0

 0 0 .36 .36 .18

 0 0 0 .90 0

.90 0 0 0 0

.47 0 .47 0 0

.05

.04

.36

.37

.19

a[][] x[] b[]

.036

.297

.333

.045

.1927

=

Matrix-vector multiplication

Problem. Sparse matrix-vector multiplication.
Assumptions. Matrix dimension is 10,000; average nonzeros per row ~ 10.

Sparse matrix-vector multiplication

21

 A * x = b

1D array (standard) representation.

• Constant time access to elements.

• Space proportional to N.

Symbol table representation.

• Key = index, value = entry.

• Efficient iterator.

• Space proportional to number of nonzeros.

22

Vector representations

 0 .36 0 0 0 .36 0 0 0 0 0 0 0 0 .18 0 0 0 0 0

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

 1 .36 5 .36 14 .18

key value
st

23

Sparse vector data type

public class SparseVector
{
 private HashST<Integer, Double> v;

 public SparseVector()
 { v = new HashST<Integer, Double>(); }

 public void put(int i, double x)
 { v.put(i, x); }

 public double get(int i)
 {
 if (!v.contains(i)) return 0.0;
 else return v.get(i);
 }

 public Iterable<Integer> indices()
 { return v.keys(); }

 public double dot(double[] that)
 {
 double sum = 0.0;
 for (int i : indices())
 sum += that[i]*this.get(i);
 return sum;
 }
}

empty ST represents all 0s vector

a[i] = value

return a[i]

dot product is constant
time for sparse vectors

HashST because order not important

2D array (standard) matrix representation: Each row of matrix is an array.

• Constant time access to elements.

• Space proportional to N2.

Sparse matrix representation: Each row of matrix is a sparse vector.

• Efficient access to elements.

• Space proportional to number of nonzeros (plus N).

24

Matrix representations

a

0

1

2

3

4

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

a

0

1

2

3

4

array of double[]objects array of SparseVector objects

st

0.0 .90 0.0 0.0 0.0

0.0 0.0 .36 .36 .18

0.0 0.0 0.0 .90 0.0

.90 0.0 0.0 0.0 0.0

.45 0.0 .45 0.0 0.0
.452

.363 .184.362

st
.903

st
.900

st
.450

st
.901

independent
symbol-table

objects

key value

a[4][2]

Sparse matrix representations

Sparse matrix-vector multiplication

25

 ..
 SparseVector[] a = new SparseVector[N];
 double[] x = new double[N];
 double[] b = new double[N];
 ...
 // Initialize a[] and x[]
 ...
 for (int i = 0; i < N; i++)
 b[i] = a[i].dot(x);

linear running time
for sparse matrix

 0 .90 0 0 0

 0 0 .36 .36 .18

 0 0 0 .90 0

.90 0 0 0 0

.47 0 .47 0 0

.05

.04

.36

.37

.19

a[][] x[] b[]

.036

.297

.333

.045

.1927

=

Matrix-vector multiplication

26

‣ sets
‣ dictionary clients
‣ indexing clients
‣ sparse vectors
‣ challenges
‣ geometric applications

Recursively partition plane into two halfplanes.

27

2d tree

1

2

3

4

6

7

8

9

10

5

1

2

87

10 9

3

4 6

5

Data structure. BST, but alternate using x- and y-coordinates as key.

• Search gives rectangle containing point.

• Insert further subdivides the plane.

28

2d tree implementation

even levels

p

points
left of p

points
right of p

p

q

points
below q

points
above q

odd levels

q

1

2

87

10 9

3

4 6

5

1
2

3

4

6

7

8

9

10

5

1

2

87

10 9

3

4 6

5

Range search. Find all points in a query axis-aligned rectangle.

• Check if point in node lies in given rectangle.

• Recursively search left/top subdivision (if any could fall in rectangle).

• Recursively search right/bottom subdivision (if any could fall in rectangle).

Typical case. R + log N.

Worst case (assuming tree is balanced). R + !N.

29

2d tree: 2d orthogonal range search

1

3

4

6

5

1

3

4 6

5

30

2d tree: nearest neighbor search

Nearest neighbor search. Given a query point, find the closest point.

• Check distance from point in node to query point.

• Recursively search left/top subdivision (if it could contain a closer point).

• Recursively search right/bottom subdivision (if it could contain a closer point).

• Organize recursive method so that it begins by searching for query point.

Typical case. log N.
Worst case (even if tree is balanced). N.

query point

1

2

87

10 9

3

4 6

5

1

3

4

6

5

1

3

4 6

5

2

7

8

9

10

closest point = 1closest point = 3closest point = 5

31

Kd tree

Kd tree. Recursively partition k-dimensional space into 2 halfspaces.

Implementation. BST, but cycle through dimensions ala 2d trees.

Efficient, simple data structure for processing k-dimensional data.

• Widely used.

• Adapts well to high-dimensional and clustered data.

• Discovered by an undergrad (Jon Bentley) in an algorithms class!

level " i (mod k)

points
whose ith
coordinate

is less than p’s

points
whose ith
coordinate

is greater than p’s

p

32

Search for intersections

Problem. Find all intersecting pairs among N geometric objects.
Applications. CAD, games, movies, virtual reality,

Simple version. 2d, all objects are horizontal or vertical line segments.

Brute force. Test all #(N 2) pairs of line segments for intersection.

Sweep vertical line from left to right.

• x-coordinates define events.

• h-segment (left endpoint): insert y-coordinate into ST.

33

Orthogonal line segment intersection search: sweep-line algorithm

y-coordinates

0

1

2

3

0

1

3

2

4

Sweep vertical line from left to right.

• x-coordinates define events.

• h-segment (left endpoint): insert y-coordinate into ST.

• h-segment (right endpoint): remove y-coordinate from ST.

34

Orthogonal line segment intersection search: sweep-line algorithm

0

1

2

3

y-coordinates

0

1

3

4

Sweep vertical line from left to right.

• x-coordinates define events.

• h-segment (left endpoint): insert y-coordinate into ST.

• h-segment (right endpoint): remove y-coordinate from ST.

• v-segment: range search for interval of y-endpoints.

35

Orthogonal line segment intersection search: sweep-line algorithm

1d range
search

4

0

1

2

3

y-coordinates

0

1

3

36

Orthogonal line segment intersection search: sweep-line algorithm

Sweep line reduces 2d orthogonal line segment intersection to 1d range search.

Proposition. The sweep-line algorithm takes time proportional to N log N + R

to find all R intersections among N orthogonal segments.

• Put x-coordinates on a PQ (or sort). N log N

• Insert y-coordinates into ST. N log N

• Delete y-coordinates from ST. N log N

• Range searches. N log N + R

Efficiency relies on judicious use of data structures.

Remark. Sweep-line solution extends to 3d and more general shapes.

37

‣ sets
‣ dictionary clients
‣ indexing clients
‣ sparse vectors
‣ challenges

Searching challenge 1A

Problem. Maintain symbol table of song names for an iPod.
Assumption A. Hundreds of songs.

Which searching method to use?
1) Sequential search in a linked list.
2) Binary search in an ordered array.
3) Need better method, all too slow.
4) Doesn’t matter much, all fast enough.

38

Searching challenge 1B

Problem. Maintain symbol table of song names for an iPod.
Assumption B. Thousands of songs.

Which searching method to use?
1) Sequential search in a linked list.
2) Binary search in an ordered array.
3) Need better method, all too slow.
4) Doesn’t matter much, all fast enough.

39

Searching challenge 2A

Problem. IP lookups in a web monitoring device.
Assumption A. Billions of lookups, millions of distinct addresses.

Which searching method to use?
1) Sequential search in a linked list.
2) Binary search in an ordered array.
3) Need better method, all too slow.
4) Doesn’t matter much, all fast enough.

40

Searching challenge 2B

Problem. IP lookups in a web monitoring device.
Assumption B. Billions of lookups, thousands of distinct addresses.

Which searching method to use?
1) Sequential search in a linked list.
2) Binary search in an ordered array.
3) Need better method, all too slow.
4) Doesn’t matter much, all fast enough.

41

Searching challenge 3

Problem. Frequency counts in “Tale of Two Cities.”
Assumptions. Book has 135,000+ words; about 10,000 distinct words.

Which searching method to use?
1) Sequential search in a linked list.
2) Binary search in an ordered array.
3) BSTs.
4) Hashing.

42

Searching challenge 4

Problem. Spell checking for a book.
Assumptions. Dictionary has 25,000 words; book has 100,000+ words.

Which searching method to use?
1) Sequential search in a linked list.
2) Binary search in an ordered array.
3) BST.
4) Hashing.

43

Problem. Index for a PC or the web.
Assumptions. 1 billion++ words to index.

Which searching method to use?

• Hashing

• LLRB trees

• Doesn’t matter much.

Searching challenge 5

44

Searching challenge 6

Problem. Index for an e-book.
Assumptions. Book has 100,000+ words.

Which searching method to use?
1. Hashing
2. Red-black-tree
3. Doesn’t matter much.

45

	10-34HashTables-2x2
	10-35SearchingApplications-2x2

