Two classic sorting algorithms

Critical components in the world's computational infrastructure.
* Full scientific understanding of their properties has enabled us
to develop them into practical system sorts.

. . . * Quicksort honored as one of top 10 algorithms of 20™ century
partltlonll’lg in science and engineering.
g eiements
m‘a;ngperformgnce
algorithm ™
values %'axkeys . Mergesort <«—— last lecture
" zhe » quicksort gesort.
1w » selection » Java sort for objects.
‘i% l:';ay » duplicate keys * Perl, C++ stable sort, Python stable sort, Firefox JavaScript, ...
i H
of 2, right first g =
5 e g » system sorts
Q l k ort QUiCkSOf‘T. <«—— this lecture
o ST
g:m:g'ivﬂ Java sort for primitive types.
. sort, Unix, Visual C++, on, Matlab, Chrome JavaScript, ...
= C gsort, Unix, Visual C++, Python, Matlab, Ch JavaScript
Algorithms, 4" Edition - Robert Sedgewick and Kevin Wayne - Copyright © 2002-2010 - January 30, 2011 12:46:16 PM

Quicksort

Basic plan.
¢ Shuffle the array.
* Partition so that, for some j
- element a[3j] is in place
- no larger element to the left of j

- no smaller element to the right of 3 Sir Charles Antony Richard Hoare

* Sort each piece recursively. 1980 Turing Award

imjput Q U I C K S O R TE X AMUP L E
shuffle K A TELE®PUTIMAOQCXOS
partitioning element

partiion. E C A I E K L P U T M Q R X O S
™~ el

not greater not less
sortleft A C E E I
sort right L M O P Q R

et A C E E I KL MOPOQRSTUX

Quicksort partitioning Quicksort: Java code for partitioning

Basic plan.

* Scan i from left for an item that belongs on the right.

* Scan j from right for item item that belongs on the left.
* Exchange a[i] and a[3j].

while (less(a[++i], a[lo]))

find item on left to swap

* Repeat until pointers cross. if (i == hi) break;
v aril while (less(a[lol, a[--jl)) find item on right to swap
i j\0123456789101112131415 if (j == lo) break;
Al
initialvalues 0 16 K RATETLE®PUIMAOQCXOS
scan left, scan right 1 12 K _&MC X 0 S
exchange 1 12 K C E L EPUTI R X 0 5
scan left, scan right 3 9 oo A T%I M Q © X O &
exchange 3 9 K C A I L E P T M Q R X 0 S
scan left, scan right 5 6 K C A I E LXE P UTMOQRX 0 S
exchange S 6 K C A I E E L P U T M 0O R X 0O S
scan left, scan right 6 5 K§_1<EE L PUTMOQRXOS
finalexchange 6 5 E-C A I E K L P U T M QR X 0S5 before |v] auwing [=v [=v after =v |
result 6 5 E CA I EKLPUTMQRIXDO S £ L ! ; - J*
Partitioning trace (array contents before and after each exchange)
5
Quicksort: Java implementation Quicksort trace
o j hi 0 1 2 3 4 5 6 7 8 91011 12 13 14 15
initial values Q UICKSORTEXAMPTLE
random shuffle K RATELTEPUTIMAOQCXOS
0 5 15 ECATIEIKLPUTMQRXOS
0O 3 4 ECAETI K L P U T M 0O R X 05
) : . 0 2 2 ACETE T KL PUTWMOQRXOS
0 0 1 A CEETIIKTUL®PUTMAOQRXO0 S
1 1 A CEETIIKLPUTWM R X 0 S
StdRandom.shuffle(a) ; shuffle needed for 4 4 ACEETICKLPUTM 8 R X 0 S
sort(a, 0, a.length - 1); performance guarantee /6 6 15 A C t ¢ T K LPUTMOQRXDOS
Clatined) 1o partition 7 915 A CE E I KL MOPTAOQRXUS
for e 7 7 8 ACEETKLMOGPTOQRZXUS
1 . : 1 8 8 A CEETIIKLMOPTAOQRIXUS
10 13 15 AC B E T KL MO P S QRTUX
if (hi <= lo) return; 10 12 12 A CEETIKLMOWPRW QSTUKX
int j = partition(a, lo, hi); 10 11 11 A C E E I K L M 0O P QR S T U X
sort(a, lo, j-1); 10 10 A CEETIIKLMOPAQRSTUKX
sort(a, j+1, hi); 14 14 15 A C £ B I K L M O P O R S T UX
5 15 A CEETIIKLMO®PAOQRSTUX
result A CEETIIKLMOPAGQRSTUX
Quicksort trace (array contents after each partition)

Quicksort animation

50 random elements

algorithm position
in order

“P

http://www.sorting-algorithms.com/quick-sort

. current subarray

not in order

Quicksort: empirical analysis

Running time estimates:
* Home PC executes 108 compares/second.

* Supercomputer executes 10%2 compares/second.

insertion sort (N2) mergesort (N log N) quicksort (N log N)
home instant 2.8 hours 317 years instant 1 second 18 min instant 0.6 sec 12 min
super instant 1 second 1 week instant instant instant instant instant instant

Lesson 1. Good algorithms are better than supercomputers.
Lesson 2. Great algorithms are better than good ones.

Quicksort: implementation details

Partitioning in-place. Using an extra array makes partitioning easier
(and stable), but is not worth the cost.

Terminating the loop. Testing whether the pointers cross is a bit trickier
than it might seem.

Staying in bounds. The (5 == 10) test is redundant (why?),
but the (i == ni) test is not.

Preserving randomness. Shuffling is needed for performance guarantee.

Equal keys. When duplicates are present, it is (counter-intuitively) better
to stop on elements equal to the partitioning element.

Quicksort: best-case analysis

Best case. Number of compares is ~NlgN.

al]
lo j hi 0 1 2 3 4 5 6 7 8 91011121314
initialvalues H A C B F E G D L | K J N MO
randomshuffe H A C B F E G D L I K J N M O
0 7 14 DACGBFEGHTLIK]JNMO
0 3 6 BACDTFEG
0 1 2 ABC
A
C
4 5 6 EF G
E
G
8 11 14 J I KL NMO
8 9 10 1)K
|
K
12 13 14 M N O
M
o
ABCDETFGHI J KLMNDO

Quicksort: worst-case analysis Quicksort: average-case analysis

Worst case. Number of compares is ~ % N2. Proposition. The average number of compares Cy to quicksort an array of
N distinct keys is ~2N InN (and the number of exchanges is ~ % N In N).
a[]
lo j hi 0 1 2 3 4 5 6 7 8 9 1011 12 13 14 2 2 _ _ .
v A B CDO EFOH 1 KLmMNoO Pf 1. Cy satisfies the recurrence C,=C, =0 and for N > 2:
randomshuffe A B C D E F G H | J K L MN O Co+Cr + ... +Cn— Cn-1 + Cn_a + ... +C
0 0 14 ABCDETFGHI J KLMNO CN:(N+1)+O 1N L g, NJ\? L
11 14 B CDETFGHI J KLMNDO 1 A 4 N
2 2 14 CDEFGHI J KLMNDO partitioning left right partitioning
oo pEFP O LKL MO « Multiply both sides by N and collect terms: ey
W 4w fF oM K LMo ultiply both sides by N and collect terms:
5 5 14 FGH I J KL MNDO
6 6 14 GH 1 JKLMNO NCy = N(N+1) + 2(Co + C1 + ... +Cn-1)
7 7 14 H I J K L MN O
8 8 14 I J KLMNO * Subtract this from the same equation for N - 1:
9 9 14 J K L MNDO
10 10 14 K L M N O NCN _ (N71)0N71 = 9N + QCN—I
11 11 14 L M N O
1212 e MoNo * Rearrange terms and divide by N (N + 1):
13 13 14 N O
° Cy _ Cna 2
A B CDETFGHI J KLMNDO N+1 = N N+1
13 14
Quicksort: average-case analysis Quicksort: average-case analysis
* Repeatedly apply above equation: Proposition. The average number of compares Cy to quicksort an array of
O Cn—1 2 N distinct keys is ~ 2N InN (and the number of exchanges is ~ ;s N In N).
N+i_, N TNyt
o Gray Caa 2 Pf 2. Consider BST tation of keys 1 t
_ » N_1 N N1 . Consider representation of keys 1 fo N.
previous equation
_ Cn_3 + Cn—2 4+ Cn-1 n 2
N -2 N-1 N N+1 shuffle
_2,2,2, . 2
= 3tgts Tt 9 10 2 5 8 7 6 1 11 12 13 3 4

* Approximate sum by an integral:

first partitioning
1 1 1

1 element
Cy = 2(N+1)|(-+-F+=-+...— fi itioni
N (V+1) (3 titst o wg 1> et ~.

N+1 1 left subarray \
~ 2(N+ 1)/ —dx
3 xT

* Finally, the desired result:

Cy ~ 2(N+1)InN =~ 1.39NIgN

Quicksort: average-case analysis

Proposition. The average number of compares Cy to quicksort an array of
N distinct keys is ~ 2N InN (and the nhumber of exchanges is ~ /4 N In N).

Pf 2. Consider BST representation of keys 1 to N.
* A key is compared only with its ancestors and descendants.
* Probability i and j are compared equals 2/ - i+ 1|. \

3 and 6 are compared
(when 3 is partition)

1 and 6 are not compared
(because 3 is partition)

first partitioning

L element
first partitioning \
element in
left subarray \

Quicksort: summary of performance characteristics

Worst case. Number of compares is quadratic.
o N+(N-1)+(N-2) +...+1 ~ B N2
* More likely that your computer is struck by lightning bolt.

Average case. Number of compares is ~1.39 Nig N.
* 39% more compares than mergesort.
 But faster than mergesort in practice because of less data movement.

Random shuffle.
* Probabilistic guarantee against worst case.
* Basis for math model that can be validated with experiments.

Caveat emptor. Many textbook implementations go quadratic if array
 Is sorted or reverse sorted.

* Has many duplicates (even if randomized!)

Quicksort: average-case analysis

Proposition. The average number of compares Cy to quicksort an array of
N distinct keys is ~2N InN (and the number of exchanges is ~ % N In N).

Pf 2. Consider BST representation of keys 1 to N.
* A key is compared only with its ancestors and descendants.
* Probability i and j are compared equals 2/ - i+ 1|.

N N 9 N—i+1 1
* Expected number of compares = " > e 2y 3 =
i=1 j=i+1 i=1 j=2
/ < vy
all pairs i and j - = 7
N 1
~ 2N — dz
z=1 T
= 2NInN

Quicksort: practical improvements

Insertion sort small subarrays.
* Even quicksort has too much overhead for tiny subarrays.
* Can delay insertion sort until end.

private static void sort(Comparable[] a, int lo, int hi)
{
if (hi <= lo + CUTOFF - 1)
{
Insertion.sort(a, lo, hi);
return;
}
int j = partition(a, lo, hi);
sort(a, lo, j-1);
sort(a, j+1, hi);

Quicksort: practical improvements

Insertion sort small subarrays.
* Even quicksort has too much overhead for tiny subarrays.
* Can delay insertion sort until end.

Median of sample.
* Best choice of pivot element = median.
 Estimate true median by taking median of sample.

private static void sort(Comparable[] a, int lo, int hi)

{
if (hi <= lo) return;

int m = medianOf3(a, lo, lo + (hi - 1lo)/2, hi);
swap(a, lo, m);

int j = partition(a, lo, hi);
sort(a, lo, j-1);
sort(a, j+1, hi);

Quicksort with median-of-3 and cutoff to insertion sort: visualization

input A A

result of
first partition

alLabinh,
s 11 1 TR A
wnthmhibnnin
ahdmandin
o o
e
T
I
A
both b mmpmmem—m——— 10T
|||||||||||IIIIIIIIIIIII||||||||||||||||||||""""""""l""""

result

Quicksort: practical improvements

Insertion sort small subarrays.
* Even quicksort has too much overhead for tiny subarrays.
* Can delay insertion sort until end.

Median of sample.

* Best choice of pivot element = median.
* Estimate true median by taking median of sample.

~ 12/7 N In N compares (slightly fewer)
Op‘rimize pamme‘rer‘s. / ~ 12/35 N In N exchanges (slightly more)

e Median-of-3 (random) elements.
e Cutoff to insertion sort for ~ 10 elements.

22

» selection

24

Selection

Goal. Find the & largest element.
Ex. Min (k=0), max (k=N - 1), median (k=N/2).

Applications.
* Order statistics.
* Find the “top £."

Use theory as a guide.

« Easy O(V log N) upper bound. How?

 Easy O(N) upper bound for k=1,2,3. How?
 Easy Q(N) lower bound. Why?

Which is true?
e Q(Nlog N) lower bound? «——— is selection as hard as sorting?

. O(N) upper bound? <«——— s there a linear-time algorithm for all k?

Quick-select: mathematical analysis

Proposition. Quick-select takes linear time on average.

Pf sketch.

* Intuitively, each partitioning step splits array approximately in half:
N+N/2+N/4+...+1 ~ 2N compares.

» Formal analysis similar to quicksort analysis yields:

Cy = 2N +kIn(N/k) +(N—k)In (N/ (N- k)

Ex. (2+21n2) N compares to find the median.

Remark. Quick-select uses ~ ! N2 compares in the worst case, but
(as with quicksort) the random shuffle provides a probabilistic guarantee.

Quick-select

Partition array so that:

* Element ar3j1 is in place.

* No larger element fo the left of ;.

* No smaller element to the right of ;.

Repeat in one subarray, depending on j; finished when j equals k.

public static Comparable select(Comparable[] a, int k)

{ if a[k] is here if a[k] is here
StdRandom. shuffle (a) ; R . .
N) sethi to j-1 set 1o to j+1
int lo = 0, hi = a.length - 1;

while (hi > lo) \ /
{

int j = partition(a, lo, hi); =v M =v
if (3 <k) lo=3+1; ' = 1 - t
else if (j > k) hi =3 - 1; To j hi
else return a[k];
}
return alk];
}

Theoretical context for selection

Proposition. [Blum, Floyd, Pratt, Rivest, Tarjan, 1973] There exists a
compare-based selection algorithm whose worst-case running time is linear.

Time Bounds for Selection

by .
Manuel Blum, Robert W. Floyd, Vaughan Pratt,
Ronald L. Rivest, and Robert E. Tarjan

Abstract

The number of comparisons required to select the i-th smallest of
n numbers is shown to be at most a linear function of n by analysis of
a new selection algorithm -- PICK. Specifically, no more than

5.4%05 n comparisons are ever required. This bound is improved for

Remark. But, constants are too high = not used in practice.

Use theory as a guide.
* Still worthwhile to seek practical linear-time (worst-case) algorithm.
* Until one is discovered, use quick-select if you don't need a full sort.

Generic methods

In our select() implementation, client needs a cast.

Double[] a = new Double[N];
for (int i = 0; i < N; i++)
a[i] = StdRandom.uniform() ;

unsafe cast
Double median = (Double) Quick.select(a, N/2);

required in client

The compiler complains.

% javac Quick.java
Note: Quick.java uses unchecked or unsafe operations.
Note: Recompile with -Xlint:unchecked for details.

Q. How to fix?

» duplicate keys

Generic methods

Pedantic (safe) version. Compiles cleanly, no cast needed in client.

generic type variable

public class Q“i‘*?ed‘:‘ti/c (value inferred from argument a[])

{
public static <Key extends Comparable<Key>> Key select(Key[] a, int k)
{ /* as before */ } ‘\\

return type matches array type
public static <Key extends Comparable<Key>> void sort(Key[] a)
{ /* as before */ }

private static <Key extends Comparable<Key>> int partition(Key[] a, int lo, int hi)
{ /* as before */ }

private static <Key extends Comparable<Key>> boolean less(Key v, Key w)
{ /* as before */ }

private static <Key extends Comparable<Key>> void exch(Key[] a, int i, int j)
{ Key swap = a[i]; a[i]l = a[j]; a[j] = swap; }

} can declare variables of generic type

http://www.cs.princeton.edu/algs4/23quicksort/QuickPedantic.java.html!

Remark. Obnoxious code needed in system sort; not in this course (for brevity).

Duplicate keys

Often, purpose of sort is to bring records with duplicate keys together.
* Sort population by age.

* Find collinear points. <« seeAssignment 3

* Remove duplicates from mailing list.

* Sort job applicants by college attended.

Chicagb 09:25:52
Chicago 09:03:13

Typical characteristics of such applications. Chicago 09:21:05

Chicago 09:19:46
* Huge array. Chicago 09:19:32
Chicago 09:00:00
* Small number of key values. Chicago 09:35:21

Chicago 09:00:59
Houston 09:01:10
Houston 09:00:13
Phoenix 09:37:44
Phoenix 09:00:03
Phoenix 09:14:25
Seattle 09:10:25
Seattle 09:36:14
Seattle 09:22:43
Seattle 09:10:11
Seattle 09:22:54

_I—

key

Duplicate keys
Mergesort with duplicate keys. Always between 2 Nlg N and N lg N compares.

Quicksort with duplicate keys.
* Algorithm goes quadratic unless partitioning stops on equal keys!
* 1990s C user found this defect in gsort().

\ several textbook and system
implementation also have this defect

STOPONEQUALKEYS

f (.

swap if we don't stop if we stop
on equal keys on equal
keys

3-way partitioning

Goal. Partition array into 3 parts so that:

* Elements between 1t and gt equal fo partition element v.
* No larger elements to left of 1t.

* No smaller elements to right of gt.

before M [l

t t
To hi

after[<v [=v >V]

t t t [
o 1t gt hi

Dutch national flag problem. [Edsger Dijkstra]

* Conventional wisdom until mid 1990s: not worth doing.

* New approach discovered when fixing mistake in C library gsort ().
* Now incorporated into gsort() and Java system sort.

Duplicate keys: the problem

Mistake. Put all keys equal to the partitioning element on one side.
Consequence. ~ ' N? compares when all keys equal.

BAABABBBCCC AAAAAAAAAANA

Recommended. Stop scans on keys equal to the partitioning element.
Consequence. ~ N Ig N compares when all keys equal.

BAABABCCBCRB AAAAAAAAAANA

Desirable. Put all keys equal to the partitioning element in place.

AAABBBBBCCC AAAAAAAAAANA

Dijkstra 3-way partitioning algorithm

3-way partitioning.

* Let v be partitioning element af1o1.

* Scan i from left fo right.
- a[i] less than v: exchange a[1t] with a[i] and increment both 1t and i
- a[i] greater than vi exchange a[gt] with a[i] and decrement gt
- a[i] equal fo vi increment i

before M [l
t 4
All the right properties e "
. prop ’ during l <V [=V [[>V l
* In-place. tt t
* Not much code. vt o
) after [<v [=v [>V]
* Small overhead if no equal keys. N } 1 '
Tlo 1t gt hi

3-way partitioning: trace

Vv all

Tt i gt \ 0 1 2 3 4 5 6 7 8 91011
0 0 11 R B R W B R R W B R
0o 1 11 R B R
1 2 11 R R
1 2 10 R B

1 3 10 R B

1 3 9 R B W

2 4 9 R R W

2 5 9 R W]

2 5 8 R W R

2 5 7 R R R

2 6 7 R B R

3 7 7 R R

3 8 7 R R W

3 8 7 B B B R RIRIRRWWWW
3-way partitioning trace (array contents after each loop iteration)

3-way quicksort: visual trace

LT i
equal to partitioning element <

3-way quicksort: Java implementation

private static void sort(Comparable[] a, int lo, int hi)
{
if (hi <= lo) return;
int 1t = lo, gt = hi;
Comparable v = a[lo];
int i = lo;
while (i <= gt)
{
int cmp = a[i].compareTo (v) ;
if (cmp < 0) exch(a, LtH%, i++);
else if (cmp > 0) exch(a, i, gt--);
else it++;
}
before M ‘ ‘
sort(a, lo, 1t - 1); ¥ 1
sort(a, gt + 1, hi); To i
} during ‘ <V ‘=V ‘ ‘ >V ‘
t [
1t i gt
= after [<v] =v [>V
t t t t
To 1t gt hi

Duplicate keys: lower bound

Sorting lower bound. If there are n distinct keys and the i one occurs
xi times, any compare-based sorting algorithm must use at least
! ")
lg <7N) ~ — qut lg & <«—— NIgN when all distinct;
aall @pll <o @l =1 N linear when only a constant number of distinct keys

compares in the worst case.

proportional to lower bound

Proposition. [Sedgewick-Bentley, 1997]
Quicksort with 3-way partitioning is entropy-optimal.
Pf. [beyond scope of course]

Bottom line. Randomized quicksort with 3-way partitioning reduces running
time from linearithmic to linear in broad class of applications.

40

Sorting applications

Sorting algorithms are essential in a broad variety of applications:
* Sort a list of names.

* Organize an MP3 library.

obvious applications

 Display Google PageRank results.
 List RSS feed in reverse chronological order.

* Find the median.
 Find the closest pair.

 Binary search in a database. problems become easy once
elements

¢ Identify statistical outliers. are in sorted order

* Find duplicates in a mailing list.

» system sorts + Data compression.

 Computer graphics.
* Computational biology.) -

. non-obvious applications
* Supply chain management.

* Load balancing on a parallel computer.

Every system needs (and has) a system sort!

41 42
Java system sorts War story (C gsort function)
Java uses both mergesort and quicksort. AT&T Bell Labs (1991). Allan Wilks and Rick Becker discovered that a gsort ()
* Arrays.sort() sorfs an array of comparable or of any primitive type. call that should have taken a few minutes was consuming hours of CPU time.

* Uses funed quicksort for primitive types; tuned mergesort for objects.

Why is gsort () so slow?

T

import java.util.Arrays;

public class StringSort

{
public static void main(String[] args)
{

String[] a = StdIn.readAll().split("\\s+");
Arrays.sort(a);

for (int i = 0; i < N; i++) At the time, almost all gsort () implementations based on those in:

StdOut.println(a[i]);] 3 5 5 5

) * Version 7 Unix (1979): quadratic fime to sort organ-pipe arrays.

* BSD Unix (1983): quadratic time to sort random arrays of Os and 1s.

Q. Why use different algorithms, depending on type?

43 44

Engineering a system sort

Basic algorithm = quicksort.
* Cutoff to insertion sort for small subarrays.
* Partitioning scheme: optimized 3-way partitioning.
* Partitioning element.
- small arrays: middle element
- medium arrays: median of 3
- large arrays: Tukey's ninther [median of 3 medians of 3]

Engineering a Sort Function

JON L. BENTLEY
M. DOUGLAS MeILROY
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974, U S A

SUMMARY

‘We recount the history of a new qsort function for a C library. Our function is clearer, faster and more
robust than existing sorts. 1t chooses partitioning clements by a new sampling scheme; it partitions by a
novel solution to Dijkstra’s Dutch National Flag problem; and it swaps efficiently. 1ts behavior was
assessed with timing and debugging testbeds, and with & program to certify performance. The design
techniques apply in domains beyond sorting.

Now widely used. C, C++, Java, ...

45

Achilles heel in Bentley-McIlroy implementation (Java system sort)

McIlroy's devious idea. [A Killer Adversary for Quicksort]
* Construct malicious input on the fly while running system quicksort,

in response to the sequence of keys compared.
* Make partitioning element compare low against all keys not seen during
selection of partitioning element (but don't commit to their relative order).
* Not hard to identify partitioning element.

Consequences.

* Confirms theoretical possibility.

 Algorithmic complexity attack: you enter linear amount of data;
server performs quadratic amount of work.

Good news. Attack is not effective if sort() shuffles input array.

Q. Why do you think arrays.sort() is deterministic?

47

Achilles heel in Bentley-McIlroy implementation (Java system sort)

Q. Based on all this research, Java's system sort is solid, right?
more disastrous consequences in C
A. No: a killer input. /
 Overflows function call stack in Java and crashes program.
* Would take quadratic time if it didn't crash first.

% more 250000. txt % java IntegerSort 250000 < 250000.txt
0 Exception in thread "main"
218750 java.lang.StackOverflowError
222662 at java.util.Arrays.sortl (Arrays.java:562)
11 at java.util.Arrays.sortl (Arrays.java:606)
166672 at java.util.Arrays.sortl (Arrays.Jjava:608)
247070 at java.util.Arrays.sortl (Arrays.Jjava:608)
83339 at java.util.Arrays.sortl (Arrays.java:608)
| 1
I I
250,000 integers Java's sorting library crashes, even if
between 0 and 250,000 you give it as much stack space as Windows allows

System sort: Which algorithm to use?
Many sorting algorithms to choose from:

Internal sorts.

» Insertion sort, selection sort, bubblesort, shaker sort.

* Quicksort, mergesort, heapsort, samplesort, shellsort.

* Solitaire sort, red-black sort, splaysort, Dobosiewicz sort, psort, ...

External sorts. Poly-phase mergesort, cascade-merge, oscillating sort.
String/radix sorts. Distribution, MSD, LSD, 3-way string quicksort.
Parallel sorts.

* Bitonic sort, Batcher even-odd sort.

e Smooth sort, cube sort, column sort.
¢ GPUsort.

46

48

System sort: Which algorithm fo use? Sorting summary

Applications have diverse attributes.
attributes

Nlog N probabilistic guarantee
fastest in practice

attributes than algorithms quick X N2/2 2NInN NligN

improves quicksort in presence of

Elementary sort may be method of choice for some combination. 3-way quick x N2/2 2NInN N duplicate keys

* Stable? 1234M
) Par‘a”el? u!gor‘”hm : | °) * *
» Deterministic? oot
K Il disti 5 = . selection X N2/2 N2/2 N2/2 N exchanges
L]
eys all distinct? . . .
e Multiple key types? @ o o X X N2/2 N2/4 N use for small N or partially ordered
L] L] L]
* Linked list or arrays? . e J
L M ds? - © © shell X ? ? N tight code, subquadratic
¢ Large or small records: Ko D
« Ts your array randomly ordered? X NIigN NIgN NIgN Nlog N guarantee, stable
* Need guaranteed performance? manyimorelcomonatio e -

Cannot cover all combinations of attributes.

” X X NlIgN NIgN NligN holy sorting grail
Q. Is the system sort good enough?
A. Usually.
49 50

Which sorting algorithm?

lifo find data data data data hash data

fifo fifo fifo fifo exch fifo fifo exch

data data find find fifo lifo data fifo

type exch hash hash find type link find

hash hash heap heap hash hash leaf hash

heap heap lifo lifo heap heap heap heap

sort less link link leaf link exch leaf

link left list list left sort node left

list leaf push push less find lifo less

push lifo root root lifo list left lifo

find push sort sort link push find link

root root type type list root path AEERE

leaf list leaf leaf sort leaf list next

tree tree left tree tree null next node

null null node null null path less null

path path null path path tree root path

node node path node node exch sink push

left link tree left type left swim root

less sort exch less root less null sink . o

exch type less exch push node sort sort 4 appllcatlon: convex hu"

sink sink next sink sink next type swap

swim swim sink swim swim sink tree swim

next next swap next next swap push tree

swap swap swim swap swap swim swap type

original ? ? ? ? ? ? sorted

Convex hull

The convex hull of a set of N points is the smallest convex set containing all

the points.
*
6 " <«——7— extreme point
K o
N &

Convex hull output. Sequence of extreme points in counterclockwise order.

Non-degeneracy assumption. No three points on a line.

Graham scan

* Choose point p with smallest y-coordinate (break ties by x-coordinate).

* Sort points by polar angle with respect to p.
 Consider points in order, and discard unless they would

create a ccw turn.

Convex hull: brute-force algorithm

Observation 1. Edges of convex hull of P connect pairs of points in P.
Observation 2. Edge p—q is on convex hull if all other points are ccw of pq.

O(N ?) algorithm. For all pairs of points p and ¢:
» Compute point.ccw(p, g, x) for all other points x.
* p—q is on hull if all values are positive.

Degeneracies. Three (or more) points on a line.

Graham scan: demo

Algorithm : GrahamScan State : STEPPING Events: 135

— e (=]
Init Run Pause Step
. J Speed: 4%

http://www.cs.princeton.edu/courses/archive/£all08/cos226/demo/ah/GrahamScan. html

Graham scan: demo 6raham scan: implementation

Algorithm : GrahamScan State : STEPPING Events: 66

Simplifying assumptions. No three points on a line; at least 3 points.

>

e

g “ R
s RIC why?
Speed: 6%

/—%
Running time. Nlog N for sorting and linear for rest.
http://www.cs '£al108, html

