COS 226 Algorithms and Data Structures

Fall 2008

Final Solutions

1. Depth-first search.

- (a) A B C F E G D H
- $\begin{picture}(b) E D G F H C B A \end{picture}$
- (c) false, true, true

2. Minimum spanning tree.

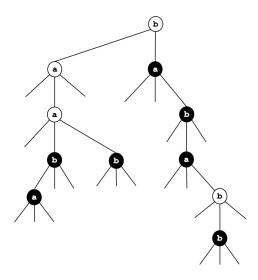
- (a) 1 2 3 4 5 11 12 13 17
- (b) 4 3 2 1 5 13 12 17 11

3. Convex hull.

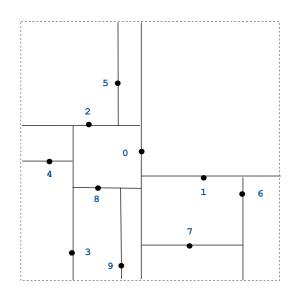
- (a) B C D G H F J I E
- (b) 1. A -> B -> C
 - 2. A \rightarrow B \rightarrow C \rightarrow D
 - 3. A -> B -> G
 - 4. A -> B -> H
 - 5. A -> B -> H -> F
 - 6. A \rightarrow B \rightarrow H \rightarrow F \rightarrow J
 - 7. $A \rightarrow B \rightarrow H \rightarrow F \rightarrow J \rightarrow I$
 - 8. A -> B -> H -> E

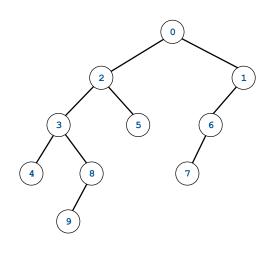
4. **TST.**

- (a) aaa aab ab ba bb bba bbbb
- (b)



5. **2D** tree. (8 points)





6. Radix sorting.

Put an X in each box if the string sorting algorithm (the standard version considered in class) has the corresponding property.

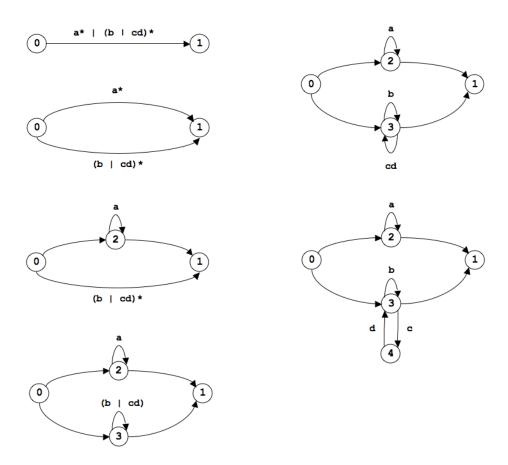
	mergesort	LSD radix sort	MSD radix sort	3-way radix quicksort
stable	X	X	X	
in-place				X
sublinear time (in best case)	X		X	X
fixed-length strings only		X		

Note that in the best case, mergesort takes $N \log N$ string compares, but a string compare can takes constant time (if the two strings differ after a constant number of characters). Thus, the overall running time can be sublinear in the input size (total number of characters in the N strings).

7. Data compression.

ababbababbabb

8. Regular expressions.



9. 1D nearest neighbor.

- \bullet constructor: create an empty red-black tree.
- insert(x): insert x into the red-black tree.
- query(y): if the data structure is empty return null; otherwise compute the floor and ceiling of y and return the (non-null) value closest to x.

10. Prefix-free codes.

- (a) Insert all of the codewords into a binary trie, marking the terminating nodes. The set of string is not prefix-free if when inserting a codeword (i) you pass through a marked node (an existing codeword is a prefix of the codeword you are inserting) or (ii) the node you mark is not a leaf node (the codeword you're inserting is a prefix of an existing codeword).
- (b) W (we go down one level in the tree for each bit we examine).
- (c) W (at most one trie node for each bit in the input).

Alternate solution 1: use a TST instead of a binary trie. Since the radix size is 2, the running time will still be linear: you at most double the length of a search path for a codeword.

Alternate solution 2: sort all of the codewords (MSD radix sort or 3-way radix quicksort) and check adjacent codewords to see if one is a prefix of the other.

11. Shortest directed cycle.

(a) The critical observation is that the shortest directed cycle is a shortest path (number of edges) from s to v, plus a single edge $v \rightarrow s$.

For each vertex s:

- * Use BFS to compute shortest path from s to each other vertex.
- * For each edge v->s entering s, consider cycle formed by shortest path from s to v (if the path exists) plus the edge v->s. Return shortest overall cycle.
- (b) The running time is O(EV). The single-source shortest path computation from s takes O(E+V) time per using BFS. Finding all edges entering s takes O(E+V) time by scanning all edges (though a better way is to compute the reverse graph at once and access the adjacency lists). We must do this for each vertex s. Thus, the overall running time is O(EV).
- (c) The memory usage is O(E+V). BFS uses O(V) extra memory and we only need to run one at a time. (A less efficient solution is to compute a V-by-V table containing the shortest path from v to w for every v and w. This uses $O(V^2)$ memory.)

12. Reductions.

- (a) $0, x_1, x_2, ..., x_N$. This is the easy direction—we just choose b = 0.
- (b) $3x_1 b, 3x_2 b, \dots, 3x_N b$. Observe that $(3x_i - b) + (3x_j - b) + (3x_k - b) = 0$ if and only if $x_i + x_j + x_k = b$. Note that we use $3x_i - b$ as the input instead of $x_i - b/3$ because the input must be integral.
- (c) I, II, and III.