9. Scientific Computing
Applications of Scientific Computing

Science and engineering challenges.
- Fluid dynamics.
- Seismic surveys.
- Plasma dynamics.
- Ocean circulation.
- Electronics design.
- Pharmaceutical design.
- Human genome project.
- Vehicle crash simulation.
- Global climate simulation.
- Nuclear weapons simulation.
- Molecular dynamics simulation.

Commercial applications.
- Web search.
- Financial modeling.
- Computer graphics.
- Digital audio and video.
- Architecture walk-throughs.
- Natural language processing.
- Medical diagnostics (MRI, CAT).

Common features.
- Problems tend to be continuous instead of discrete.
- Algorithms must scale to handle huge problems.
IEEE 754 representation.

- Used by all modern computers.
- Scientific notation, but in binary.
- Single precision: float = 32 bits.
- Double precision: double = 64 bits.

Ex. Single precision representation of -0.453125.

```
sign bit  8-bit exponent  23-bit significand
  1   0 1 1 1 1 1 1 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
-1 125

1/2 + 1/4 + 1/16 = 0.8125

-1 \times 2^{125 - 127} \times 1.8125 = -0.453125
```
Remark. Most real numbers are not representable, including π and $1/10$.

Roundoff error. When result of calculation is not representable.
Consequence. Non-intuitive behavior for uninitiated.

```java
if (0.1 + 0.2 == 0.3) {/* false */
if (0.1 + 0.3 == 0.4) {/* true */
```

Financial computing. Calculate 9% sales tax on a 50¢ phone call.
Banker's rounding. Round to nearest integer, to even integer if tie.

```java
double a1 = 1.14 * 75; // 85.49999999999999
  // 85.49999999999999
double a2 = Math.round(a1); // 85 you lost 1¢
double b1 = 1.09 * 50; // 54.50000000000001
double b2 = Math.round(b1); // 55 SEC violation (!)
```
Floating Point

Remark. Most real numbers are not representable, including \(\pi \) and 1/10.

Roundoff error. When result of calculation is not representable.

Consequence. Non-intuitive behavior for uninitiated.

```
if (0.1 + 0.2 == 0.3) { /* false */ }
if (0.1 + 0.3 == 0.4) { /* true */ }
```

“Floating point numbers are like piles of sand; every time you move them around, you lose a little sand and pick up a little dirt.” — Brian Kernighan and P. J. Plauger
Catastrophic Cancellation

A simple function. \[f(x) = \frac{1 - \cos x}{x^2} \]

Goal. Plot \(f(x) \) for \(-4 \cdot 10^{-8} \leq x \leq 4 \cdot 10^{-8}\).
Catastrophic Cancellation

A simple function. \[f(x) = \frac{1 - \cos x}{x^2} \]

Goal. Plot \(f(x) \) for \(-4 \cdot 10^{-8} \leq x \leq 4 \cdot 10^{-8}\).
Catastrophic Cancellation

Ex. Evaluate \(f_1(x) \) for \(x = 1.1e-8 \).

- \(\text{Math.cos}(x) = 0.999999999999999888897769753748434595763683319091796875 \).
 nearest floating point value agrees with exact answer to 16 decimal places.

- \((1.0 - \text{Math.cos}(x)) = 1.1102e-16 \)
 inaccurate estimate of exact answer \((6.05 \cdot 10^{-17})\)

- \((1.0 - \text{Math.cos}(x)) / (x * x) = 0.9175 \)
 80% larger than exact answer (about 0.5)

Catastrophic cancellation. Devastating loss of precision when small numbers are computed from large numbers, which themselves are subject to roundoff error.
Numerical Catastrophes

Ariane 5 rocket. [June 4, 1996]
- 10 year, $7 billion ESA project exploded after launch.
- 64-bit float converted to 16 bit signed int.
- Unanticipated overflow.

Vancouver stock exchange. [November, 1983]
- Index undervalued by 44%.
- Recalculated index after each trade by adding change in price.
- 22 months of accumulated truncation error.

Patriot missile accident. [February 25, 1991]
- Failed to track scud; hit Army barracks, killed 28.
- Inaccuracy in measuring time in 1/20 of a second since using 24 bit binary floating point.
War Story

Bugs. Java Virtual Machine and compiler struggle with 2^{-1022}.

```
public class RuntimeHang {
    public static void main(String[] args) {
        double d = Double.parseDouble("2.2250738585072012e-308");
        System.out.println(d);
    }
}
```

```
public class CompileHang {
    public static void main(String[] args) {
        double d = 2.2250738585072012e-308;
        System.out.println(d);
    }
}
```

Bugs identified and fixed. February, 2011.

http://www.exploringbinary.com/java-hangs-when-converting-2-2250738585072012e-308
Gaussian Elimination

\[Ax = b \]
Linear System of Equations

Linear system of equations. N linear equations in N unknowns.

\[
\begin{align*}
0 x_0 + 1 x_1 + 1 x_2 &= 4 \\
2 x_0 + 4 x_1 - 2 x_2 &= 2 \\
0 x_0 + 3 x_1 + 15 x_2 &= 36
\end{align*}
\]

\[
A = \begin{bmatrix} 0 & 1 & 1 \\ 2 & 4 & -2 \\ 0 & 3 & 15 \end{bmatrix}, \quad b = \begin{bmatrix} 4 \\ 2 \\ 36 \end{bmatrix}
\]

matrix notation: find \(x \) such that \(Ax = b \)

Fundamental problems in science and engineering.

- Chemical equilibrium.
- Linear and nonlinear optimization.
- Kirchoff's current and voltage laws.
- Hooke's law for finite element methods.
- Leontief's model of economic equilibrium.
- Numerical solutions to differential equations.
- ...
Ex. Combustion of propane.

\[x_0 C_3H_8 + x_1 O_2 \Rightarrow x_2 CO_2 + x_3 H_2O \]

Stoichiometric constraints.

- Carbon: \(3x_0 = x_2 \).
- Hydrogen: \(8x_0 = 2x_3 \).
- Oxygen: \(2x_1 = 2x_2 + x_3 \).
- Normalize: \(x_0 = 1 \).

\[C_3H_8 + 5O_2 \Rightarrow 3CO_2 + 4H_2O \]

Remark. Stoichiometric coefficients tend to be small integers; among first hints suggesting the atomic nature of matter.
Kirchoff's Current Law

Ex. Find current flowing in each branch of a circuit.

Kirchoff's current law.

\[10 = 1x_0 + 25(x_0 - x_1) + 50(x_0 - x_2). \]
\[0 = 25(x_1 - x_0) + 30x_1 + 1(x_1 - x_2). \]
\[0 = 50(x_2 - x_0) + 1(x_2 - x_1) + 55x_2. \]

\{ conservation of electrical charge \}

Solution. \(x_0 = 0.2449, x_1 = 0.1114, x_2 = 0.1166. \)
Upper Triangular System of Equations

Upper triangular system. \(a_{ij} = 0 \) for \(i > j \).

\[
\begin{align*}
2x_0 + 4x_1 - 2x_2 &= 2 \\
0x_0 + 1x_1 + 1x_2 &= 4 \\
0x_0 + 0x_1 + 12x_2 &= 24
\end{align*}
\]

Back substitution. Solve by examining equations in reverse order.

- Equation 2: \(x_2 = 24/12 = 2 \).
- Equation 1: \(x_1 = 4 - x_2 = 2 \).
- Equation 0: \(x_0 = (2 - 4x_1 + 2x_2) / 2 = -1 \).

```c
for (int i = N-1; i >= 0; i--) {
    double sum = 0.0;
    for (int j = i+1; j < N; j++)
        sum += A[i][j] * x[j];
    x[i] = (b[i] - sum) / A[i][i];
}
```

\[
x_i = \frac{1}{a_{ii}} \left[b_i - \sum_{j=i+1}^{N-1} a_{ij} x_j \right]
\]
Gaussian Elimination

Gaussian elimination.
- Among oldest and most widely used solutions.
- Repeatedly apply row operations to make system upper triangular.
- Solve upper triangular system by back substitution.

Elementary row operations.
- Exchange row p and row q.
- Add a multiple α of row p to row q.

Key invariant. Row operations preserve solutions.
Elementary row operations.

\[
\begin{align*}
0 x_0 + 1 x_1 + 1 x_2 &= 4 \\
2 x_0 + 4 x_1 - 2 x_2 &= 2 \\
0 x_0 + 3 x_1 + 15 x_2 &= 36
\end{align*}
\]

(interchange row 0 and 1)

\[
\begin{align*}
2 x_0 + 4 x_1 - 2 x_2 &= 2 \\
0 x_0 + 1 x_1 + 1 x_2 &= 4 \\
0 x_0 + 3 x_1 + 15 x_2 &= 36
\end{align*}
\]

(subtract 3x row 1 from row 2)

\[
\begin{align*}
2 x_0 + 4 x_1 - 2 x_2 &= 2 \\
0 x_0 + 1 x_1 + 1 x_2 &= 4 \\
0 x_0 + 0 x_1 + 12 x_2 &= 24
\end{align*}
\]
Gaussian Elimination: Forward Elimination

Forward elimination. Apply row operations to make upper triangular.

Pivot. Zero out entries below pivot a_{pp}.

$$a_{ij} = a_{ij} - \frac{a_{ip}}{a_{pp}} a_{pj}$$

$$b_i = b_i - \frac{a_{ip}}{a_{pp}} b_p$$

```
for (int p = 0; p < N; p++) {
    for (int i = p + 1; i < N; i++) {
        double alpha = A[i][p] / A[p][p];
        b[i] -= alpha * b[p];
        for (int j = p; j < N; j++)
            A[i][j] -= alpha * A[p][j];
    }
}
```
Gaussian Elimination: Forward Elimination

Forward elimination. Apply row operations to make upper triangular.

Pivot. Zero out entries below pivot a_{pp}.

\[
\begin{bmatrix}
* & * & * & * & * \\
* & * & * & * & * \\
* & * & * & * & * \\
* & * & * & * & * \\
* & * & * & * & * \\
\end{bmatrix}
\Rightarrow
\begin{bmatrix}
0 & * & * & * & * \\
0 & * & * & * & * \\
0 & * & * & * & * \\
0 & * & * & * & * \\
0 & * & * & * & * \\
\end{bmatrix}
\Rightarrow
\begin{bmatrix}
0 & 0 & * & * & * \\
0 & 0 & * & * & * \\
0 & 0 & * & * & * \\
0 & 0 & 0 & * & * \\
0 & 0 & 0 & 0 & * \\
\end{bmatrix}
\Rightarrow
\begin{bmatrix}
0 & 0 & 0 & 0 & * \\
0 & 0 & 0 & 0 & * \\
0 & 0 & 0 & 0 & * \\
0 & 0 & 0 & 0 & * \\
0 & 0 & 0 & 0 & * \\
\end{bmatrix}
\]

\[
\text{for (int } p = 0; p < N; p++) \{
\text{for (int } i = p + 1; i < N; i++) \{
\text{double alpha = } A[i][p] / A[p][p];
\text{b[i] -= alpha * b[p];}
\text{for (int } j = p; j < N; j++)
\text{A[i][j] -= alpha * A[p][j];}
\}
\}
\]

19
Gaussian Elimination Example

\[
\begin{align*}
1 x_0 & + 0 x_1 + 1 x_2 + 4 x_3 = 1 \\
2 x_0 & + -1 x_1 + 1 x_2 + 7 x_3 = 2 \\
-2 x_0 & + 1 x_1 + 0 x_2 + -6 x_3 = 3 \\
1 x_0 & + 1 x_1 + 1 x_2 + 9 x_3 = 4
\end{align*}
\]
Gaussian Elimination Example

<table>
<thead>
<tr>
<th></th>
<th>x_0</th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>=</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>3</td>
</tr>
</tbody>
</table>
Gaussian Elimination Example

\[
\begin{align*}
1x_0 + 0x_1 + 1x_2 + 4x_3 &= 1 \\
0x_0 + -1x_1 + -1x_2 + -1x_3 &= 0 \\
0x_0 + 0x_1 + 1x_2 + 1x_3 &= 5 \\
0x_0 + 0x_1 + -1x_2 + 4x_3 &= 3
\end{align*}
\]
Gaussian Elimination Example

\[
\begin{align*}
1 x_0 &+ 0 x_1 + 1 x_2 + 4 x_3 = 1 \\
0 x_0 &+ -1 x_1 + -1 x_2 + -1 x_3 = 0 \\
0 x_0 &+ 0 x_1 + 1 x_2 + 1 x_3 = 5 \\
0 x_0 &+ 0 x_1 + 0 x_2 + 5 x_3 = 8
\end{align*}
\]
Gaussian Elimination Example

\[
\begin{align*}
1x_0 + 0x_1 + 1x_2 + 4x_3 &= 1 \\
0x_0 + -1x_1 + -1x_2 + -1x_3 &= 0 \\
0x_0 + 0x_1 + 1x_2 + 1x_3 &= 5 \\
0x_0 + 0x_1 + 0x_2 + 5x_3 &= 8
\end{align*}
\]

\[
\begin{align*}
x_3 &= \frac{8}{5} \\
x_2 &= 5 - x_3 = \frac{17}{5} \\
x_1 &= 0 - x_2 - x_3 = \frac{-25}{5} \\
x_0 &= 1 - x_2 - 4x_3 = \frac{-44}{5}
\end{align*}
\]
Remark. Previous code fails spectacularly if pivot $a_{pp} = 0.$
Gaussian Elimination: Partial Pivoting

Partial pivoting. Swap row \(p \) with the row that has largest entry in column \(p \) among rows \(i \) below the diagonal.

```java
// find pivot row
int max = p;
for (int i = p + 1; i < N; i++)
    if (Math.abs(A[i][p]) > Math.abs(A[max][p]))
        max = i;

// swap rows \( p \) and \( \text{max} \)
double t = b[p]; b[p] = b[max]; b[max] = t;
```

Q. What if pivot \(a_{pp} = 0 \) while partial pivoting?
A. System has no solutions or infinitely many solutions.
Gaussian Elimination with Partial Pivoting

```java
public static double[] lsolve(double[][] A, double[] b) {
    int N = b.length;

    // Gaussian elimination
    for (int p = 0; p < N; p++) {
        // partial pivot
        int max = p;
        for (int i = p+1; i < N; i++)
            if (Math.abs(A[i][p]) > Math.abs(A[max][p]))
                max = i;
        double[] T = A[p];
        A[max] = T;
        double t = b[p];
        b[p] = b[max];
        b[max] = t;

        // zero out entries of A and b using pivot A[p][p]
        for (int i = p+1; i < N; i++)
            double alpha = A[i][p] / A[p][p];
            b[i] -= alpha * b[p];
            for (int j = p; j < N; j++)
                A[i][j] -= alpha * A[p][j];
    }

    // back substitution
    double[] x = new double[N];
    for (int i = N-1; i >= 0; i--) {
        double sum = 0.0;
        for (int j = i+1; j < N; j++)
            sum += A[i][j] * x[j];
        x[i] = (b[i] - sum) / A[i][i];
    }
    return x;
}
```

~ $N^3/3$ additions,
~ $N^3/3$ multiplications

~ $N^2/2$ additions,
~ $N^2/2$ multiplications
Stability and Conditioning
Numerically-Unstable Algorithms

Stability. Algorithm $f_1(x)$ for computing $f(x)$ is numerically stable if $f_1(x) \approx f(x + \varepsilon)$ for some small perturbation ε.

Nearly the right answer to nearly the right problem.

Ex 1. Numerically unstable way to compute $f(x) = \frac{1 - \cos x}{x^2}$

```java
public static double fl(double x) {
    return (1.0 - Math.cos(x)) / (x * x);
}
```

- $fl(1.1e-8) = 0.9175$.
 true answer = $1/2$.

Note. Numerically stable formula: $f(x) = \frac{2 \sin^2(x/2)}{x^2}$
Numerically-Unstable Algorithms

Stability. Algorithm $f_1(x)$ for computing $f(x)$ is **numerically stable** if $f_1(x) \approx f(x + \varepsilon)$ for some small perturbation ε.

Ex 2. Gaussian elimination (w/o partial pivoting) can fail spectacularly.

$$a = 10^{-17}$$

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>x_0</th>
<th>x_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>no pivoting</td>
<td>0.0</td>
<td>1.0</td>
</tr>
<tr>
<td>partial pivoting</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>exact</td>
<td>$\frac{1}{1-2a} \approx 1$</td>
<td>$\frac{1-3a}{1-2a} \approx 1$</td>
</tr>
</tbody>
</table>

Theorem. Partial pivoting improves numerical stability.
Ill-Conditioned Problems

Conditioning. Problem is well-conditioned if \(f(x) \approx f(x + \varepsilon) \) for all small perturbation \(\varepsilon \).

Solution varies gradually as problem varies.

Ex 1. arccos() and tan() functions.

- \(\text{arccos}(0.99999991) \approx 0.000425 \quad \text{tan}(1.57078) \approx 6.12490 \times 10^5 \)
- \(\text{arccos}(0.99999992) \approx 0.000400 \quad \text{tan}(1.57079) \approx 1.58058 \times 10^4 \)

Consequence. The following formula for computing the great circle distance between \((x_1, y_1)\) and \((x_2, y_2)\) is inaccurate for nearby points.

\[
d = 60 \arccos(\sin x_1 \sin x_2 + \cos x_1 \cos x_2 \cos(y_1 - y_2))
\]

very close to 1 when two points are close
Ill-Conditioned Problems

Conditioning. Problem is **well-conditioned** if $f(x) \approx f(x + \varepsilon)$ for all small perturbation ε.

Solution varies gradually as problem varies.

Ex 2. Hilbert matrix.
- Tiny perturbation to H_n makes it singular.
- Cannot solve $H_{12}x = b$ using floating point.

\[
H_4 = \begin{bmatrix}
1 & \frac{1}{2} & \frac{1}{3} & \frac{1}{4} \\
\frac{1}{2} & \frac{1}{3} & \frac{1}{4} & \frac{1}{5} \\
\frac{1}{3} & \frac{1}{4} & \frac{1}{5} & \frac{1}{6} \\
\frac{1}{4} & \frac{1}{5} & \frac{1}{6} & \frac{1}{7}
\end{bmatrix}
\]

Hilbert matrix

Matrix condition number. [Turing, 1948] Widely-used concept for detecting ill-conditioned linear systems.
Numerically Solving an Initial Value ODE

Lorenz attractor.
- Idealized atmospheric model to describe turbulent flow.
- Convective rolls: warm fluid at bottom, rises to top, cools off, and falls down.

\[
\begin{align*}
\frac{dx}{dt} &= -10(x+y) \\
\frac{dy}{dt} &= -xz + 28x - y \\
\frac{dz}{dt} &= xy - \frac{8}{3}z
\end{align*}
\]

- x = fluid flow velocity
- y = ∇ temperature between ascending and descending currents
- z = distortion of vertical temperature profile from linearity

Solution. No closed form solution for $x(t)$, $y(t)$, $z(t)$.

Approach. Numerically solve ODE.
Euler's Method

Euler's method. [to numerically solve initial value ODE]

- Choose Δt sufficiently small.
- Approximate function at time t by tangent line at t.
- Estimate value of function at time $t + \Delta t$ according to tangent line.
- Increment time to $t + \Delta t$.
- Repeat.

$$
\begin{align*}
x_{t+\Delta t} &= x_t + \Delta t \frac{dx}{dt}(x_t, y_t, z_t) \\
y_{t+\Delta t} &= y_t + \Delta t \frac{dy}{dt}(x_t, y_t, z_t) \\
z_{t+\Delta t} &= z_t + \Delta t \frac{dz}{dt}(x_t, y_t, z_t)
\end{align*}
$$

Advanced methods. Use less computation to achieve desired accuracy.

- 4th order Runge-Kutta: evaluate slope four times per step.
- Variable time step: automatically adjust timescale Δt.
- See COS 323.
Lorenz Attractor: Java Implementation

```java
public class Butterfly {

    public static double dx(double x, double y, double z) {
        return -10 * (x - y);
    }

    public static double dy(double x, double y, double z) {
        return -x * z + 28 * x - y;
    }

    public static double dz(double x, double y, double z) {
        return x * y - 8 * z / 3;
    }

    public static void main(String[] args) {
        double x = 0.0, y = 20.0, z = 25.0;
        double dt = 0.001;
        StdDraw.setXscale(-25, 25);
        StdDraw.setYscale(0, 50);

        while (true) {
            double xnew = x + dt * dx(x, y, z);
            double ynew = y + dt * dy(x, y, z);
            double znew = z + dt * dz(x, y, z);
            x = xnew; y = ynew; z = znew;
            StdDraw.point(x, z);
        }
    }
}
```

Euler's method

plot x vs. z
The Lorenz Attractor

\texttt{% java Butterfly}

\begin{figure}
\centering
\includegraphics[width=\textwidth]{lorenz_attractor.png}
\caption{The Lorenz Attractor with coordinates (-25, 0) and (25, 50).}
\end{figure}
Butterfly Effect

Experiment.
- Initialize $y = 20.01$ instead of $y = 20$.
- Plot original trajectory in blue, perturbed one in magenta.
- What happens?

Ill-conditioning.
- Sensitive dependence on initial conditions.
- Property of system, not of numerical solution approach.

Predictability: does the flap of a butterfly's wings in Brazil set off a tornado in Texas? — title of a 1972 talk by Edward Lorenz
Accuracy depends on both stability and conditioning.

- Danger: apply unstable algorithm to well-conditioned problem.
- Danger: apply stable algorithm to ill-conditioned problem.
- Safe: apply stable algorithm to well-conditioned problem.

Numerical analysis. Art and science of designing numerically stable algorithms for well-conditioned problems.

Lesson 1. Some algorithms are unsuitable for floating-point computation.
Lesson 2. Some problems are unsuitable to floating-point computation.