Running Time

4.1 Performance

“As soon as an Analytic Engine exists, it will necessarily

guide the future course of the science. Whenever any result
is sought by its aid, the question will arise —by what course

of calculation can these results be arrived at by the machine
BTERUGIE in the shortest time?” — Charles Babbage

Programming

IINEVE!

how many times do you
have to turn the crank?

Robert Sedgewick Kevin Wayne

Charles Babbage (1864) Analytic Engine

Introduction to Prog g inJava: An Interdisciplinary Approach - Robert Sedgewick and Kevin Wayne - Copyright © 2002-2010 - 3/30/11 8:32 PM

The Challenge Scientific Method

Q. Will my program be able to solve a large practical problem? Scientific method.

= Observe some feature of the natural world.

= Hypothesize a model that is consistent with the observations.

« Predict events using the hypothesis.

= Verify the predictions by making further observations.

« Validate by repeating until the hypothesis and observations agree.

Principles.
= Experiments must be reproducible.
« Hypothesis must be falsifiable.

compile debug solve problems
in practice

Key insight. [Knuth 1970s]
Use the scientific method to understand performance.

Reasons to Analyze Algorithms Algorithmic Successes

Predict performance. Discrete Fourier fransform.
= Will my program finish? = Break down waveform of N samples into periodic components.
« When will my program finish? « Applications: DVD, JPEG, MRI, astrophysics,
[Brufe for‘ce: N2 S‘I’eps Freidrich Gauss
1805
Compare algorithms. » FFT algorithm: Nlog N steps, enables new technology.
= Will this change make my program faster?
= How can I make my program faster? fine _
ot quadratic
Basis for inventing new ways to solve problems.
= Enables new technology. 4 ——
- Enables new research. g
32T
9
167 linearithmic)\
8T linear g)).‘
size —]‘K Z‘K 4IK BIK
5
Algorithmic Successes Three-Sum Problem

N-body Simulation.
. Simulate gravitational interactions among N bodies.
« Application: cosmology, semiconductors, fluid dynamics, ...
= Brute force: N?steps. Ancire Appel
PU '81

« Barnes-Hut algorithm: Nlog N steps, enables new research. % more 8ints.txt
30 -30 -20 -10 40 0 10 5

Three-sum problem. Given N integers, how many triples sum to 0 ?
Context. Deeply related to problems in computational geometry.

time

quadratic % java ThreeSum < 8ints.txt
64T
4
30 -30 0
30 -20 -10
-30 -10 40
-10 0 10

32T

16T . . .
linearithmic

8T -
linear

T 1 T T
size — 1K 2K 4K 8K

Q. How would you write a program to solve the problem?

Three-Sum: Brute-Force Solution

Empirical Analysis

Empirical analysis. Run the program for various input sizes.

T Running Linux on Sun-Fire-X4100 with 1668 RAM

Caveat. If Nis too small, you will measure mainly noise.

Empirical Analysis

Q. How to time a program?
A. A stopwatch.

Stopwatch

% java ThreeSum < 1Kints.txt

tick tick tick

0
% java ThreeSum < 2Kints.txt

tick tick tick tick tick tick

tick tick tick tick tick tick

tick tick tick tick tick tick

tick tick tick tick tick tick
2

391930676 -763182495 371251819
-326747290 802431422 -475684132

Stopwatch

Q. How to fime a program?
A. A stopwatch object.

public class Stopwatch

Stopwatch() create a new stopwatch and start it running

double elapsedTime()

public class Stopwatch {
private final long start;

public Stopwatch() {
start = System.currentTimeMillis() ;

}

public double elapsedTime () {

return (System.currentTimeMillis() - start) / 1000.0;

}

Empirical Analysis

Data analysis. Plot running time vs. input size N.
time

|
512T

256T

128T
64T

return the elapsed time since creation, in seconds

| | | I
size — 1K 2K 4K

Q. How fast does running time grow as a function of input size N ?

8K

Stopwatch
Q. How to fime a program?
A. A stopwatch object.
pubTlic class Stopwatch
Stopwatch() create a new stopwatch and start it running

double elapsedTime()

public static void main(String[] args) {
int[] a = StdArrayIO.readIntlD() ;
Stopwatch timer = new Stopwatch() ;
StdOut.println(count(a)) ;
StdOut.println (timer.elapsedTime()) ;

Empirical Analysis

Initial hypothesis. Running time approximately
obeys a power law T(N) =aN*.

Data analysis. Plot running time vs. input size N
on a log-log scale.

Consequence. Power law yields straight line.

/

slope = b

Refined hypothesis. Running time grows
as cube of input size: a N3.+~_

slope

return the elapsed time since creation, in seconds

time
1024T
512T

B slope = 3

8T
4T |
2T

T

T T T T
size — 1K 2K 4K 8K

Doubling Hypothesis

Doubling hypothesis. Quick way to estimate 4 in a power law hypothesis.

Run program, doubling the size of the input?

512 0.033 -

1024 0.26 7.88
2048 2.16 8.43
4096 17.18 7.96
8192 136.76 7.96

seems to converge to a constant ¢ = §

Hypothesis. Running time is about a N* with b =Igc.

Performance Challenge 2

Let T(N) be running time of main() as a function of input N.

public static void main(String[] args) {

int N = Integer.parselnt(args[0]) ;

Scenario 2. T(2N)/ T(N) converges to about 2.

Q. What is order of growth of the running time?
I N N? N3 N4 2N

Performance Challenge 1

Let T(N) be running time of main() as a function of input size N.

public static void main(String[] args) {

int N = Integer.parselnt(args[0]) ;

Scenario 1. T(2N)/ T(N) converges to about 4.

Q. What is order of growth of the running time?
/l N N2 N3 N* 2V

Prediction and Validation

Hypothesis. Running time is about a N3 for input of size N.

. How to estimate a?
Q Howto ctimae.

A. Run the program!

4096 17.18

17.17 = a 4096 3
4096 17.15 =a=25%x10"1
4096 17.17

Refined hypothesis. Running time is about 2.5 x 10 -1 x N ? seconds.

Prediction. 1,100 seconds for N = 16,384,

16384 1118.86 <+— validates hypothesis

Mathematical Analysis

Donald Knuth
Turing award '74

Mathematical Analysis

Running time. Count up frequency of execution of each instruction and
weight by its execution time.

int count = 0;
for (int i = 0; i < N; i++)
for (int j = i+l; j < N; j++)
if (a[i] + a[j] == 0) count++;

variable declaration N+2 0+1+2+ ..+ (N-1) =12 NN-T)
variable assignment N+2
less than comparison 1/2(N+1)(N+2)
equal to comparison 12N (N-1) becoming very tedious to count
array access NHN-1)

increment < N?
23

Mathematical Analysis

Running time. Count up frequency of execution of each instruction and
weight by its execution time.

int count = 0;
for (int i = 0; 1 < N; i++)
if (a[i] == 0) count++;

variable declaration 2
variable assignment 2
less than comparison N+1
) between N (ho zeros)
equal to comparison N and 2N (all zeros)
array access N /
increment <2N

Tilde Notation

Tilde notation.
« Estimate running time as a function of input size N.
= Ignore lower order terms.
- when N is large, terms are negligible
- when N is small, we don't care

Ex1. 6N3+ 17N2 + 56 ~ 6N?

Ex2. 6N3+ 100N*3 + 56 ~ 6N?

Ex3. 6N3+ 17N2logN ~ 6N?
—

discard lower-order terms
(e.g., N =1000: 6 trillion vs. 169 million)

. N
Technical definition. f(N)~g(N) means 1M, Z((N; =

Mathematical Analysis

Running time. Count up frequency of execution of each instruction and

weight by its execution time.

pubTlic static int count(int[] a)

{
int N = a.length;
int cnt = 0; ~—1
for (int i = 0; i < N; i++)
for (int j = 1i+1; j < N; j +— N
zlrgzzr for (int k +1; k < N; k++) T ~N%/2
I F ali] + a[j] + a[k] == 0) [+— ~N7/6
Cnt++; \
} return cnt; depends on input data

Inner loop. Focus on instructions in "inner loop."

Analysis: Empirical vs. Mathematical

Empirical analysis.

= Measure running times, plot, and fit curve.

« Easy to perform experiments.

« Model useful for predicting, but not for explaining.

Mathematical analysis.

= Analyze algorithm to estimate # ops as a function of input size.

« May require advanced mathematics.

= Model useful for predicting and explaining.

Critical difference. Mathematical analysis is independent of a
particular machine or compiler; applies to machines not yet buil+.

25

27

Constants in Power Law

Power law. Running time of a typical program is ~a N®.

Exponent b depends on: algorithm.

Leading constant a depends on:
= Algorithm.
« Input data.
« Caching.
= Machine.
= Compiler.
= Garbage collection.
=« Just-in-time compilation.
» CPU use by other applications.

} system independent effects

system dependent effects

Our approach. Use doubling hypothesis (or mathematical analysis)
to estimate exponent b, run experiments to estimate a.

Order of Growth Classifications

Observation. A small subset of mathematical functions suffice to
describe running time of many fundamental algorithms.

while (N > 1) {
N=N/2;

IgN
/'

IgN=log,N

for (int i = 0; i < N; i++)

N

for (int i = 0; i < N; i++)
for (int j = 0; j < N; j++)

N?

public static void g(int N) {
if (N == 0) return;
g(N/2);
g(N/2) ;
for (int i = 0; i < N; i++)

NlgN

public static void f(int N) ({

if (N == 0) return;
£(N-1);
£(N-1);
}
2N

Order of Growth Classifications

time
10247 {3 o order of growth factor for
S & . . doubling
s12T - § N 7§ description function hypothesis
S
I
4 % constant 1 1
7] logarithmic log N 1
64T .
linear N 2
linearithmic ~ Nlog N 2
8T quadratic N2 4
47 cubic N3 8
2T i
logarithmic exponential 2N 2N
T constant .
Commonly encountered growth functions
T T T 1 T T T T U
size — 1K 2K 4K 8K 1024K

Orders of growth (log-log plot)

Binary Search

29

Order of Growth: Consequences

predicted factor
of problem size
order of growth increase if computer

predicted running time if speed is increased by

order of growth problem size is increased by a factor of 10
a factor of 100
linear a few minutes linear 10
linearithmic a few minutes linearithmic 10
quadratic several hours quadratic 3-4
cubic a few weeks cubic 2-3
exponential forever exponential 1

Effect of increasing problem size

for a program that runs for a few seconds Effect of increasing computer speed

on problem size that can be solved in
a fixed amount of time

Sequential Search vs. Binary Search

Sequential search in an unordered array.
= Examine each entry until finding a match (or reaching the end).
= Takes time proportional to length of array in worst case.

43 72 13 84 64 33 97 51 6 25 95 96 53 14 93

Binary search in an ordered array.

= Examine the middle entry.

« If equal, return index.

« If too large, search in left half (recursively). IEl
« If too small, search in right half (recursively).

Binary Search: Java Implementation
Invariant. If key appears in the array, then a[lo] < key < a[hi].

// precondition: array a[] is sorted
public static int search(int key, int[] a) {
int lo = 0;
int hi = a.length - 1;
while (lo <= hi) {
int mid = lo + (hi - lo) / 2;
if (key < a[mid]) hi = mid - 1;
else if (key > a[mid]) lo = mid + 1;
else return mid;

}

return -1; // not found

Java library implementation. aArrays.binarySearch().

33

Memory

VA O

BN

Binary Search: Mathematical Analysis

Proposition. Binary search in an ordered array of size N takes
at most 1 +log, N 3-way compares.

Pf. After each 3-way compare, problem size decreases by a factor of 2.

N -N/2—=N/4 -N/8 — ... = 1

Q. How many times can you divide N by 2 until you reach 1?

A. About log, N.
|
21
452 =1
B—>4->2 -1
16>8—>4—>2 =1
N >16>8>4->2 -1
6432 > 16—>8—>4—>2 —1
12856432 = 16>8—>4—>2 — I
256 —> 128 = 64 =32 — 16 >8 >4 —>2 — |
512 >256 =128 > 64 =32 =16 >8—>4—>2 — |
1024 — 512 =256 —> 128 > 64 >32 =16 >8 >4 —>2 — |

Typical Memory Requirements for Primitive Types

Bit. Oor 1.

Byte. 8 bits.

Megabyte (MB). 1 million bytes ~ 210 bytes.
Gigabyte (GB). 1 billion bytes ~ 220 bytes.

type bytes
boolean 1
byte 1
char 2
int 4
float 4
Tong 8
double 8

Q. How much memory (in bytes) does your computer have?

Typical Memory Requirements for Reference Types

Memory of an object.
= Memory for each instance variable, plus
= Object overhead = 8 bytes on a 32-bit machine.

16 bytes on a 64-bit machine

Charge object 32 bytes
public class Charge object
private double rx; Gueiead
private double ry; rx
private double g; ry ::doukﬂe
N . values
} q

Memory of a reference. 4 byte pointer on a 32-bit machine.

\

8 bytes on a 64-bit machine

37

Summary

Q. How can I evaluate the performance of my program?
A. Computational experiments, mathematical analysis, scientific method.

Q. What if it's not fast enough? Not enough memory?
« Understand why.
=« Buy a faster computer or more memory.
« Learn a better algorithm. «— see cos 226
= Discover a new algorithm. «— sce cos 423

attribute better machine better algorithm

cost $$$ or more $ or less

T makes "everything" does not apply to
el run faster some problems
. quantitative dramatic qualitative
improvement improvements improvements possible

40

Typical Memory Requirements for Array Types

Memory of an array.
= Memory for each array entry.
= Array overhead = 16 bytes on a 32-bit machine.

24 bytes on a 64-bit machine

type bytes
int[] 4N + 16
double[] 8N + 16
Charge[] 36N + 16

int[1[] 4N2+ 20N+ 16
double[]J[] 8N2+20N+ 16
String 2N + 40

Q. What's the biggest double[] array you can store on your computer?

