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Recap: Boolean Logic Example 

Ed goes to the party if  

   Dan does not and Stella does. 
Choose “Boolean variables” for 3 events: 

E: Ed goes to party 

D: Dan goes to party 

S: Stella goes to party } { Each is either  
  TRUE or FALSE 

E = S  AND  (NOT D) 

Alternately: E = S  AND  D 



Three Equivalent Representations 

Boolean Expression       E = S AND D 

Truth table: 

Value of E for every 

   possible D, S. 

   TRUE=1;  FALSE= 0. 0 0 1 

0 1 1 

1 1 0 

0 0 0 

E S D 

Boolean Circuit E 
S 

D 



Boolean “algebra” 

A  AND  B written as  A   B            A  OR  B  written as  A  +  B 

0 + 0 = 0 

 

1 + 0 = 1 

 

1 + 1 = 1 

0  0 = 0 

 

0  1 = 0 

 

1     1  = 1 

Funny arithmetic 
Will provide readings on this… 
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Boolean gates 

Output voltage is high  

if both of the input voltages are high; 

otherwise output voltage low. 

 

 

 

 

High voltage = 1 

Low voltage = 0 

Shannon (1939) 

x 

y 
x · y 

x 

y 
x + y 

Output voltage is high  

if either of the input voltages are high; 

otherwise output voltage low. 

 

 

 

 

x x Output voltage is high  

if the input voltage is low; 

otherwise output voltage low. 

 

 

 

 
(implicit extra wires for power) 



Claude Shannon (1916-2001) 
 
Founder of many fields  

       (circuits, information theory, artificial intelligence…) 

With “Theseus” mouse 

A Symbolic Analysis of Relay and 

Switching Circuits, [1938] 



Combinational circuit 

 Boolean gates connected by wires 

 

 

 

 

 

 Important: no cycles allowed 

Wires: transmit voltage 

(and hence value) 



Examples 
(Sometimes we use this 

for shorthand) 4-way AND 

More complicated 

example 

 Crossed wires that are not connected  

 are sometimes drawn like this. 



Combinational circuits and control 

 “If data has arrived and  

 packet has not been sent, send a signal” 

Data arrived? 

Packet sent? 

S 
D 

P 

Send signal 

S = D AND (NOT P) 



Circuits compute functions 

 Every combinational 

circuit computes a 

Boolean function of its 

inputs 

Inputs Outputs 



Ben Revisited 

B: Ben Bikes 

R: It is raining 

E: There is an exam today 

O: Ben overslept 

   Ben only rides to class if he overslept,  
but even then if it is raining he’ll walk and show up 
late (he hates to bike in the rain). But if there’s an 
exam that day he’ll bike if he overslept, even in the 
rain. 

 

How to write a boolean expression for B in terms of R, E, O? 



Truth table  Boolean expression 

Use OR of all input 

combinations that lead to 

TRUE 

 

B =  O·R·E + O·R·E + O·R·E 

O R E B 

0 0 0 0 

0 0 1 0 

0 1 0 0 

0 1 1 0 

1 0 0 1 

1 0 1 1 

1 1 0 0 

1 1 1 1 

Note:  

AND, OR, and NOT gates suffice to implement every Boolean function! 



Expression simplification 

 Some simple rules: 

x + x = 1 

x · 1 = x 

x · 0 = 0 

x + 0 = x 

x + 1 = 1 

x + x = x · x = x 

x · (y + z) = x · y + x · z 

x + (y · z) = (x+y) · (x+z) 

x · y + x · y 

 = x · (y + y) 

 = x · 1 

 = x 

 

De Morgan’s Laws: 

x · y = x + y 

x + y = x · y 

In groups of three try to simplify: O·R·E + O·R·E + O·R·E 

 



Simplifying Ben’s circuit 

… 



Boole’s reworking of Clarke’s 

“proof” of existence of God 

(see handout) 

 General idea: Try to prove that Boolean expressions  

E1, E2, …, Ek cannot simultaneously be true 

 

 Method: Show E1· E2 · … · Ek  = 0 

 

 What exactly does Clarke’s “proof” prove?  How 

convincing is such a proof to you? 

 

Also: Do Google search for “Proof of God’s Existence.” 



The Kalam argument for god’s 

existence (arose in many world traditions) 

 Whatever that begins to exist has a cause. 

 The universe began to exist. If there is no original cause 

(i.e., God) then there must be an infinite chain of causal 

events, which is impossible. 

Does this remind you of other issues studied in the course? 



Sizes of representations 

 For k variables: A B … X 

0 0 … 0 

0 0 … 0 

0 1 … 0 

0 1 … 1 

… … … … 

… … … … 

1 1 … 1 

k + 1 

2k 

k 10 20 30 

2k 1024 1048576 1073741824 

For an arbitrary function, 

expect roughly half of X’s to be 1 

(for 30 inputs roughly 1/2 billion!) 

 

Tools for reducing size:  

(a) circuit optimization (b) modular design 



Combinational circuit for binary 

addition? 

 

 

 

 

 Want to design a circuit to add any two N-

bit integers (say N =64). 

25  11001 

+29  11101 

  54  110110 

Is the truth table method useful? Ideas? 



Modular design 

Have small number 

of basic components. 

 

 

Put them together to achieve  

desired functionality 

Basic principle of modern industrial design;  

recurring theme in next few lectures. 



1-bit adder 

(Carry from previous adder) 

Hand in on Mar 22: Truth table, circuit for 1-bit adder. 

ak bk 

ck 1-ADD ck+1 

sk 

Carry bit for  

next adder. 



Modular Design 

for boolean circuits 

An N-bit adder using N 1-bit adders 

(will do Mar 22) 



Something to think about:  

   How hard is Circuit Verification? 

 Given a circuit, decide if it is “trivial” (no matter the input,  
  it either always outputs 1 or always outputs 0) 

 

 

 

 

 

 Alternative statement: Decide if there is any setting of 
the inputs that makes the circuit evaluate to 1.   
 
Time required? 



Beyond combinational circuits … 

 Need 2-way communication 

(must allow cycles!) 

 Need memory (scratchpad) 

CPU 

Ethernet card 

Will study next time. 



(1) A waveform is sampled at a rate of 

4 Hz and 4-bit samples. The following 

is the sequence of samples.  

Draw the waveform (hand it in). 

Is your answer unique? If not, 

Draw another waveform consistent with 

the samples. 

10, 11, 11, 11, 5, 0, 8, 11, 11, 11, 15.   

(2) Suppose variable i has value 4 and j has the value 8. 

What values do they have after the following instruction is 

executed: i  j/i? 

(3)Your computer runs at 3Ghz. How may operations per sec 

(roughly) does it do? 


