
Computing via boolean

logic.

COS 116: 3/8/2011

Sanjeev Arora

Recap: Boolean Logic Example

Ed goes to the party if

 Dan does not and Stella does.
Choose “Boolean variables” for 3 events:

E: Ed goes to party

D: Dan goes to party

S: Stella goes to party } { Each is either
 TRUE or FALSE

E = S AND (NOT D)

Alternately: E = S AND D

Three Equivalent Representations

Boolean Expression E = S AND D

Truth table:

Value of E for every

 possible D, S.

 TRUE=1; FALSE= 0. 0 0 1

0 1 1

1 1 0

0 0 0

E S D

Boolean Circuit E
S

D

Boolean “algebra”

A AND B written as A B A OR B written as A + B

0 + 0 = 0

1 + 0 = 1

1 + 1 = 1

0 0 = 0

0 1 = 0

1 1 = 1

Funny arithmetic
Will provide readings on this…

·

·

·

·

Boolean gates

Output voltage is high

if both of the input voltages are high;

otherwise output voltage low.

High voltage = 1

Low voltage = 0

Shannon (1939)

x

y
x · y

x

y
x + y

Output voltage is high

if either of the input voltages are high;

otherwise output voltage low.

x x Output voltage is high

if the input voltage is low;

otherwise output voltage low.

(implicit extra wires for power)

Claude Shannon (1916-2001)

Founder of many fields

 (circuits, information theory, artificial intelligence…)

With “Theseus” mouse

A Symbolic Analysis of Relay and

Switching Circuits, [1938]

Combinational circuit

 Boolean gates connected by wires

 Important: no cycles allowed

Wires: transmit voltage

(and hence value)

Examples
(Sometimes we use this

for shorthand) 4-way AND

More complicated

example

 Crossed wires that are not connected

 are sometimes drawn like this.

Combinational circuits and control

 “If data has arrived and

 packet has not been sent, send a signal”

Data arrived?

Packet sent?

S
D

P

Send signal

S = D AND (NOT P)

Circuits compute functions

 Every combinational

circuit computes a

Boolean function of its

inputs

Inputs Outputs

Ben Revisited

B: Ben Bikes

R: It is raining

E: There is an exam today

O: Ben overslept

 Ben only rides to class if he overslept,
but even then if it is raining he’ll walk and show up
late (he hates to bike in the rain). But if there’s an
exam that day he’ll bike if he overslept, even in the
rain.

How to write a boolean expression for B in terms of R, E, O?

Truth table  Boolean expression

Use OR of all input

combinations that lead to

TRUE

B = O·R·E + O·R·E + O·R·E

O R E B

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 0

1 0 0 1

1 0 1 1

1 1 0 0

1 1 1 1

Note:

AND, OR, and NOT gates suffice to implement every Boolean function!

Expression simplification

 Some simple rules:

x + x = 1

x · 1 = x

x · 0 = 0

x + 0 = x

x + 1 = 1

x + x = x · x = x

x · (y + z) = x · y + x · z

x + (y · z) = (x+y) · (x+z)

x · y + x · y

 = x · (y + y)

 = x · 1

 = x

De Morgan’s Laws:

x · y = x + y

x + y = x · y

In groups of three try to simplify: O·R·E + O·R·E + O·R·E

Simplifying Ben’s circuit

…

Boole’s reworking of Clarke’s

“proof” of existence of God

(see handout)

 General idea: Try to prove that Boolean expressions

E1, E2, …, Ek cannot simultaneously be true

 Method: Show E1· E2 · … · Ek = 0

 What exactly does Clarke’s “proof” prove? How

convincing is such a proof to you?

Also: Do Google search for “Proof of God’s Existence.”

The Kalam argument for god’s

existence (arose in many world traditions)

 Whatever that begins to exist has a cause.

 The universe began to exist. If there is no original cause

(i.e., God) then there must be an infinite chain of causal

events, which is impossible.

Does this remind you of other issues studied in the course?

Sizes of representations

 For k variables: A B … X

0 0 … 0

0 0 … 0

0 1 … 0

0 1 … 1

… … … …

… … … …

1 1 … 1

k + 1

2k

k 10 20 30

2k 1024 1048576 1073741824

For an arbitrary function,

expect roughly half of X’s to be 1

(for 30 inputs roughly 1/2 billion!)

Tools for reducing size:

(a) circuit optimization (b) modular design

Combinational circuit for binary

addition?

 Want to design a circuit to add any two N-

bit integers (say N =64).

25 11001

+29 11101

 54 110110

Is the truth table method useful? Ideas?

Modular design

Have small number

of basic components.

Put them together to achieve

desired functionality

Basic principle of modern industrial design;

recurring theme in next few lectures.

1-bit adder

(Carry from previous adder)

Hand in on Mar 22: Truth table, circuit for 1-bit adder.

ak bk

ck 1-ADD ck+1

sk

Carry bit for

next adder.

Modular Design

for boolean circuits

An N-bit adder using N 1-bit adders

(will do Mar 22)

Something to think about:

 How hard is Circuit Verification?

 Given a circuit, decide if it is “trivial” (no matter the input,
 it either always outputs 1 or always outputs 0)

 Alternative statement: Decide if there is any setting of
the inputs that makes the circuit evaluate to 1.

Time required?

Beyond combinational circuits …

 Need 2-way communication

(must allow cycles!)

 Need memory (scratchpad)

CPU

Ethernet card

Will study next time.

(1) A waveform is sampled at a rate of

4 Hz and 4-bit samples. The following

is the sequence of samples.

Draw the waveform (hand it in).

Is your answer unique? If not,

Draw another waveform consistent with

the samples.

10, 11, 11, 11, 5, 0, 8, 11, 11, 11, 15.

(2) Suppose variable i has value 4 and j has the value 8.

What values do they have after the following instruction is

executed: i  j/i?

(3)Your computer runs at 3Ghz. How may operations per sec

(roughly) does it do?

