
What computers
just cannot do.

COS 116, Spring 2010
Adam Finkelstein

“Prof, what’s with all the
negative thinking?!?”

 An obvious motivation:
Understand the limits of technology

“What computers can’t do.”

Power of negative thinking…

 Impossibility of trisecting angle
with ruler and compass (Galois)

Often, impossibility result deep insight

Examples

 Nothing travels faster than light

Group Theory
and much of
modern math

Relativity and
modern physics

Uses of negative thinking in
computer science……

CAPTCHA (CMU Group)
Computer generated test that
Computers (at least with current
algorithmic knowledge) seem
unable to solve pass.

Cryptography

“Tasks that computers cannot do fast enough”; topic of future lecture

Today: Tasks that are going to be unsolvable by a
computer (no matter how long it runs)

 … the story has many sidestories,
characters, and thoughtprovoking
consequences

Reading (first 10 pages by Thurs):
What is computation? By Martin Davis

In Mathematics…..
“Can mathematicians be replaced by machines?”

Axioms – Set of statements

Derivation rules – finite set of rules for deriving
new statements from axioms

Theorems – Statements that can be derived from
axioms in a finite number of steps

Mathematician – Person who tries to determine
whether or not a statement is a theorem.

[Hilbert, 1900]
Math is axiomatic

Ans (Goedel,Turing, etc.): Computers cannot discover all
math truths; in fact no axiomatic system can capture all math truths

“Given starting configuration for the game of life, determine
whether or not cell (100,100) is ever occupied by a critter.”

John Conway

Understanding complex systems
(or even simple systems)….

Can a simple set of mathematical equations “solve” problems like:

Ans: Problem is unsolvable by
computers. So no easy “theory”
to explain the outcomes of game of life.

Automated software checking?

e.g. Windows Vista:
50-million line program

Can computers check whether or not it will ever crash?

Ans: No computer program can solve the task of
checking if a given piece of code will ever crash (or “hang up”)

How can one prove result of prev. slide?

A. Turing

• Fix a simple computational model,
Turing-Post pseudocode
• Argue that this simple model can simulate
all realizable computational models
(anything a computer can do, a T.P. program can do too)
• Show that a T.P. program cannot solve the computational
task

OK, but how do you prove that T-P pseudocode
cannot solve the computational task?
Ans. Do the reading; discussion next time.

Discussion
Time

(reconstructing Turing’s thought process)

What is a computation?

What is a computation?

Basic Elements
 Scratch Pad
 Step-by-step description of what to do (“program”);

should be finite!
 At each step:

 Can only scan a fixed number of symbols
 Can only write a fixed number of symbols

A formalization of an age-old notion

Turing’s model

 1 dimensional unlimited scratchpad
(“infinite tape”)

 Only symbols are 0 or 1
(tape has a finite number of 1s)

 Can only scan/write
one symbol per step

 Program looks like

1. PRINT 0
2. GO LEFT
3. GO TO STEP 1 IF 1 SCANNED
4. PRINT 1
5. GO RIGHT
6. GO TO STEP 5 IF 1 SCANNED
7. PRINT 1
8. GO RIGHT
9. GO TO STEP 1 IF 1 SCANNED
10. STOP

The Doubling Program

Example:
What does this program do?

1. PRINT 0
2. GO RIGHT
3. GO TO STEP 1 if 1 SCANNED
4. GO TO STEP 2 if 0 SCANNED

Discussion
Time

Can this computational model do every computation
that pseudocode can?

How do we implement arithmetic instructions,
arrays, loops?

Surprising facts about this simple model

 It can do everything that pseudocode can do

Hence it can “simulate” any other physical
system, and in particular simulate any other
physically realizable “computer.”

[CHURCH-TURING THESIS”]

THIS MODEL CAPTURES THE NOTION OF
“COMPUTATION” ----TURING

Recall: Numbers and letters can be written in binary.

A program can also be represented by a string of bits!

Representing programs in binary

“Code” for a program

Many conventions possible (e.g., ASCII)
Davis’s convention:

P Code (P)

= Binary Representation

Programs and Data

Usual viewpoint -

A False Dichotomy!

Program

Data

But can have - Program

Code of Program

Universal Program U

 U “simulates” what P would do on that data

Data

U
Program P

(Sometimes also known as “interpreter”; basis of modern
technologies)

DV

Automated Bug Checking Revisited

Halting Problem

Let P = program such that code(P) = V.
Does P halt on data D?

Trivial Idea: Simulate P using universal program U.
If P halts, will eventually detect.

Problem: But if P never halts, neither does the simulation.

IDEAS???

Next Time: Halting Problem is
unsolvable by another program

Homework for next Thurs posted this afternoon.
For discussion next time: Write Turing-Post program
that prints the bit sequence 101 infinitely often.
Also write the binary code of this program.

Read this proof in the Davis article, and try to understand.

Ponder the meaning of “Proof by contradiction.”
How convincing is such a proof?

“When something’s not right, it’s wrong…” -Bob Dylan

	What computers �just cannot do.
	“Prof, what’s with all the �negative thinking?!?”
	Power of negative thinking…
	Uses of negative thinking in computer science……
	Today: Tasks that are going to be unsolvable by a computer (no matter how long it runs)
	In Mathematics…..�“Can mathematicians be replaced by machines?”
	Understanding complex systems�(or even simple systems)….
	Automated software checking?
	Slide Number 9
	Slide Number 10
	What is a computation?
	Turing’s model
	Example: �What does this program do?
	Slide Number 14
	Surprising facts about this simple model
	Slide Number 16
	“Code” for a program
	Programs and Data
	Universal Program U
	Automated Bug Checking Revisited
	Next Time: Halting Problem is unsolvable by another program

