
“It ain’t no good if it ain’t
snappy enough.”
(Efficient Computations)

COS 116, Spring 2011
Sanjeev Arora

Administrative stuff
 Readings avail. from course web page
 Feedback form on course web page; fully anonymous.
 Lab 2 due today; HW1 due Thurs.
 Reminder: Lab 3 Wed 7:30 Friend 007. If you are

struggling with pseudocode, pls ask TA’s in the lab for
help.

What cellular automaton did we encounter in last lecture?

In what ways (according to Brian Hayes) is the
universe like a cellular automaton?

What aspect(s) of the physical world are
not represented well by a cellular automaton?

Discussion
Time

Today’s focus: efficiency in
computation

“If it is worth doing, it is worth doing well, and fast.”

Recall: our model of “computation”: pseudocode

Question:
How do we go shopping for
a “fast” algorithm?

 Ideally, our measure should be
independent of:
machine
 technology

Like this ?
AMD Phenom™ II quad-core processor 840T;
6GB DDR3 memory; 1TB hard drive;

“Running time” of an algorithm

 Definition: the number of “elementary
operations” performed by the algorithm

 Elementary operations: +, -, *, /, assignment,
evaluation of conditionals

(discussed also in pseudocode handout)

“Speed” of computer: number of elementary operations
it can perform per second (Simplified definition)
Do not consider this in “running time” of algorithm;

technology-dependent.

Example: Find Min
 n items, stored in array A
 Variables are i, best
 best ← 1
 Do for i = 2 to n

{
if (A[i] < A[best]) then
{ best ← i }

}

Example: Find Min
 n items, stored in array A
 Variables are i, best
 best ← 1
 Do for i = 2 to n

{
if (A[i] < A[best]) then
{ best ← i }

}

 How many operations executed before the loop?
 A: 0 B: 1 C: 2 D: 3

Example: Find Min
 n items, stored in array A
 Variables are i, best
 best ← 1
 Do for i = 2 to n

{
if (A[i] < A[best]) then
{ best ← i }

}

 How many operations per iteration of the loop?
 A: 0 B: 1 C: 2 D: 3

Example: Find Min
 n items, stored in array A
 Variables are i, best
 best ← 1
 Do for i = 2 to n

{
if (A[i] < A[best]) then
{ best ← i }

}

 How many times does the loop run?
 A: n B: n+1 C: n-1 D: 2n “iterations”

Example: Find Min
 n items, stored in array A
 Variables are i, best
 best ← 1
 Do for i = 2 to n

{
if (A[i] < A[best]) then
{ best ← i }

}

Uses at most 2(n – 1) + 1 operations
InitializationNumber of iterations

1 comparison and maybe an
assignment = at most 2
operations per loop iteration

} (roughly = 2n)

Efficiency of Selection Sort
Do for i = 1 to n – 1
{

Find cheapest bottle among those numbered i to n

Swap that bottle and the i’th bottle.
}

 For the i’th round, takes at most 2(n – i) + 3
 To figure out running time, need to figure out how to sum

(n – i) for i = 1 to n – 1
…and then double the result.

About 2(n – i) steps

3 steps

Gauss’s trick : Sum of (n – i) for i = 1 to n – 1

S = 1 + 2 + … + (n – 2) + (n – 1)
+ S = (n – 1) + (n – 2) + … + 2 + 1

2S = n + n + … + n + n

2S = n(n – 1)

 So total time for selection sort is
≤ n(n – 1) + 3n

n – 1 times

Discussion
Time

“20 Questions”:
I have a number between 1 and a million in mind.
Guess it by asking me yes/no questions,
and keep the number of questions small.

Question 1: “Is the number bigger than half a million?” No

Question 2: “Is the number bigger than a quarter million?”

Strategy: Each question halves the range of possible answers.

No

Pseudocode: Guessing number from1 to n
Lower ← 1
Upper ← n
Found ← 0
Do while (Found=0)
{
Guess ←Round((Lower + Upper)/2)
If (Guess = True Number)

{
Found ← 1
Print(Guess)
}

If (Guess < True Number)
{
Lower ← Guess
}

else
{
Upper← Guess
}

}

Binary
Search

How many times does
the loop run??

Brief detour: Logarithms (CS view)

 log2 n = K means 2K-1 < n ≤ 2K

 In words: K is the number of times you need
to divide n by 2 in order to get a number ≤ 1

John Napier16 1024 1048576 8388608

log2 n
4 10 20 23

n

Running times encountered in
this lecture

n= 8 n= 1024 n= 1048576 n=8388608

log2 n 3 10 20 23

n 8 1024 1048576 8388608

n2 64 1048576 1099511627776 70368744177664

Efficiency really makes a difference!

(NB: for large n, n2/10 dwarfs 10n !)

“There are only 10 types of people in the world –
those who know binary and those who don’t.”

Next….

Binary search and binary
representation of numbers
 Say we know 0 ≤ number < 2K

Is 2K / 2 ≤ number < 2K?

No Yes

Is 2K / 4 ≤ number < 2K / 2?

No Yes

Is 2K × 3/8 ≤ number < 2K / 2?

No Yes

… …

0 2K

Binary representations (cont’d)
 In general, each number from 1 to n can be uniquely identified

by a sequence of yes/no answers to these questions.
(E.g. n =32; label for 21 = yes, no, yes, no, yes)

 Correspond to paths down this “tree”:

Is 2K / 2 ≤ number < 2K?
No Yes

Is 2K / 4 ≤ number < 2K / 2?

No Yes

Is 2K / 8 ≤ number < 2K / 4?

No Yes

… …

Is 2K × 3/8 ≤ number < 2K / 2?

No Yes

… …

…

Binary representation of n
(the more standard definition)

n = 2k bk + 2k-1 bk-1 + … + 2 b2 + b1

where the b’s are either 0 or 1)

The binary representation of n is:
 n2 = bk bk – 1 … b2 b1

Example: 21 = 16 + 4 + 1 = 24 + 22 + 20.
Binary representation = 10101

Efficiency of Effort:
A lens on the world

 QWERTY keyboard
 “UPS Truck Driver’s Problem” (a.k.a.

Traveling Salesman Problem or TSP)
 CAPTCHA’s (differentiate humans from

machines)
 Quantum computing

[Jim Loy]

(explored in future lectures)

Can n particles do 2n “operations” in a single step?
Or is Quantum Mechanics not quite correct?

SIAM J.
Computing
26(5) 1997

Computational efficiency has a bearing on physical theories.

	“It ain’t no good if it ain’t snappy enough.”�(Efficient Computations)
	Administrative stuff
	Slide Number 3
	Today’s focus: efficiency in computation
	Question: �How do we go shopping for�a “fast” algorithm?
	“Running time” of an algorithm
	Example: Find Min
	Example: Find Min
	Example: Find Min
	Example: Find Min
	Example: Find Min
	Efficiency of Selection Sort
	Gauss’s trick : Sum of (n – i) for i = 1 to n – 1�
	“20 Questions”: �I have a number between 1 and a million in mind. �Guess it by asking me yes/no questions, �and keep the number of questions small.�
	Pseudocode: Guessing number from1 to n
	 Brief detour: Logarithms (CS view)
	Running times encountered in this lecture
	Slide Number 18
	Binary search and binary representation of numbers
	Binary representations (cont’d)
	Binary representation of n�(the more standard definition)
	Efficiency of Effort: �A lens on the world
	Slide Number 23

