Creating new worlds inside the computer

COS 116: 2/10/2011 Sanjeev Arora

Pseudocode

- Simple instructions: involve +, -, x, ÷
- Compound instructions
 - Conditionals
 - Loops
- No need to sweat over exact wording during exams (unless it changes meaning!)

Algorithm defn; revisited

"Pseudocode for turning a set of inputs into outputs in a finite amount of time"

Questions to think about:

- What class of computational tasks can be solved by algorithms?
- How dependent is this class on the exact definition of pseudocode?

Today's topic: Creating new worlds inside the computer.

"simulation"

Conway's Game of life

Rules: At each step, in each cell
Survival: Critter survives if it has 2 or 3 neighbors.
Death: Critter dies if it has 1 or fewer neighbors, or more than 3.
Birth: New critter is born if cell is currently empty and 3 neighboring cells have critters.

Discussion Time

How would you write pseudocode that simulates Game of Life?

Should use: n x n array A (for desired n)

A[i, j] = 1 means critter lives in square, 0 means empty square

Pseudocode for each step

```
Do for i = 1 to n
{
                           Do for i = 1 to n
                           ł
                                                                      neighbors \leftarrow A[i-1, j-1] + A[i-1, j] + A[i-1, j+1] + A[i, j-1] + A[i, j+1] + A[i+1, j-1] + A[i, j+1] + A[i+1, j-1] + A[i+1, j-1
                                                                                                                                                                                                                       A[i + 1, j] + A[i + 1, j + 1]
                                                                        if (neighbors = 2 \text{ OR } neighbors = 3) then
                                                                                                                                              \{ B[i, j] \leftarrow 1 \}
                                                                       else if ( neighbors = 1 \dots)
                                                                                                                                                ...etc. //see handout; Example 3//
                           }
Do for i = 1 to n
ł
                           Do for j = 1 to n
                                                                     \{ A[i,j] \leftarrow B[i,j] \}
}
```

Moral of the Game of Life?

Simple local behavior can lead to complex global behavior

(cf. Brian Hayes article on blackboard)

Crystal growth: capture of nearby floating molecules

Next..

How does weather prediction happen?

Why can't we predict the weather a month from today?

Twister simulation

Divide region into 3D grid

Identify laws of physics for air

Navier Stokes equations:

How does a block of air move when certain pressure, temperature and velocity differentials exist on its boundary?

Simulator pseudocode

 Initialize Grid using data from observations: surface and aircraft measurements, radar (NEXRAD) readings, etc.

```
Do for i = 1 to n

{

Do for j = 1 to n

{

Do for k = 1 to n

{Update state of Grid[i, j, k] }

}
```

Other examples of simulation

Protein folding

[Turing 52] Turing, Alan, "The Chemical Basis of Morphogenesis," *Philosophical Transactions of the Royal Society B*, Vol. 237, pp. 37–72 (August 14, 1952).

How patterns arise in plants and animals

Weather forecasting

Animation

Display

Q: How to display result of simulation?

A: Computer graphics (later in course)

[Enright and Fedkiw 02]

Bigger questions

Alan Turing

Albert Einstein

- Can computer simulation be replaced by a "theory of weather"? A "theory of tornadoes"?
- Is there a "theory" that answers this type of problem:
 - □ Given: A starting configuration in the game of life
 - Output: "Yes" if the cell at position (100, 100) is ever occupied, "No" otherwise

Actually, reverse trend: "theory of matter" (particle physics) is becoming computational.

1670 F = ma

Today

Hayes (reading this week): The universe as a "cellular automaton"

Peeking ahead:

A computer can simulate another computer (e.g., a Classic Mac simulator on a PC). Will explore the implications of this in a future lecture.

Game of life is actually a "computer."

What does this pseudocode do? Write on a piece of paper and hand it in.

n items, stored in array *A*Variables are *i*, *S*.

```
S← 0
Do for i = 1 to [n/2]
{
S ← S + A[2*i];
}
```


Stable Matching Problem

Problem:

Given N men & N women, find "suitable" matching □ Everyone lists their preferences from best to worst.

Man	1 st	2 nd	3rd	4 th	5 th
Victor	Bertha	Amy	Diane	Erika	Clare
Wyatt	Diane	Bertha	Amy	Clare	Erika
Xavier	Bertha	Erika	Clare	Diane	Amy
Yancey	Amy	Diane	Clare	Bertha	Erika
Zeus	Bertha	Diane	Amy	Erika	Clare

Men's Preference List

Stable Matching Problem

Problem:

Given N men & N women, find "suitable" matching □ Everyone lists their preferences from best to worst.

Woman	1 st	2 nd	3 rd	4 th	5 th
Amy	Zeus	Victor	Wyatt	Yancey	Xavier
Bertha	Xavier	Wyatt	Yancey	Victor	Zeus
Clare	Wyatt	Xavier	Yancey	Zeus	Victor
Diane	Victor	Zeus	Yancey	Xavier	Wyatt
Erika	Yancey	Wyatt	Zeus	Xavier	Victor

Women's Preference List

Stable matching: definition

There is no pair such that they prefer each other more than their current partners. A man & woman are currently unstable if they prefer each other more than their current partner

Men's Preference List

Man	1 st	2 nd	3 rd
Xavier	Α	В	С
Yancey	В	Α	С
Zeus	Α	В	С

Women's Preference List

Woman	1 st	2 nd	3 rd
Amy	Y	X	Z
Bertha	X	Y	Z
Clare	Х	Y	Z

Lavender assignment is a possible matching. Are there any unstable pairs?

Yes. Bertha and Xavier form an unstable pair.
 They would prefer each other to current partners.

Example

Men's Preference List

Man	1 st	2 nd	3 rd
Xavier	Α	В	С
Yancey	В	Α	С
Zeus	Α	В	С

Women's Preference List

Woman	1 st	2 nd	3 rd
Amy	Y	X	Z
Bertha	X	Y	Z
Clare	X	Y	Z

Green assignment is a stable matching.

Example

Men's Preference List

Man	1 st	2 nd	3 rd
Xavier	Α	В	С
Yancey	В	Α	С
Zeus	Α	В	С

Women's Preference List

Woman	1 st	2 nd	3 rd
Amy	Y	X	Z
Bertha	X	Y	Z
Clare	X	Y	Z

Gray assignment is also a stable matching.

Propose-And-Reject Algorithm

Guarantees a stable matching.

Gale-Shapley Algorithm (men propose)

```
Initialize each person to be free.
```

{

```
while (some man m is free and hasn't proposed to every woman)
```

```
w = first woman on m's list to whom he has not yet proposed
if (w is free)
    assign m and w to be engaged
else if (w prefers m to her fiancé f)
    assign m and w to be engaged, and f to be free
else
    w rejects m
```

Extensions

Unacceptable partners

Every woman is not willing to marry every man, and vice versa.

□ Some participants declare others as "unacceptable."

Sets of unequal size

Unequal numbers of men and women, e.g. 100 men & 90 women

Limited Polygamy

□e.g., Bill wants to be matched with 3 women.

Matching Residents to Hospitals

- Hospitals ~ Men (limited polygamy allowed).
- Residents ~ Women (more than hospitals)
- Started just after WWII (before computer usage).
- Ides of March, 13,000+ residents are matched.
- Rural hospital dilemma.
 - Certain hospitals (mainly in rural areas) were unpopular and declared unacceptable by many residents.
 - □ How to find stable matching that benefits rural hospitals?

Assignment for Valentine's day

(write on piece of paper and bring to class on Tues; participation grade)

- Try Gale-Shapley algorithm for previously-shown Amy-Erica / Victor-Zeuss preference lists, but vary the order of choosing man *m*. Does this affect the outcome?
- Try the version where women propose. Does this affect the outcome?
- Bonus question: Try to justify this statement The Gale-Shapley algorithm finishes at some point, and when it finishes, there are no unstable pairs.

Other homework

Readings for this week (on blackboard): (i) Brian Hayes article; first 5 pages (ii) Brooks 99-126.

HW 1: Will be on website and has to be submitted in Class next Thurs