Telling a robot how to behave

Sanjeev Arora COS 116: Spring 2011

Today: Understanding a simple robot

Why?

• Larger goal: seek an answer to

"What is Computation?"

- Acquire insight into technology that will become pervasive within the next decade. Tangible example of "Breathing life into matter."
- First encounter with many themes of the course.

Robots in culture

Real robots

Discussion...

Mars rover: what are the design principles?

Definition of "Robot":

A machine that can be programmed to interact with the physical environment in a desired way

Key word: programmed
 As opposed to cars, televisions, which are operated by people

Components of a robot

Three stages:

1. Sensors/Inputs: light, sound, motion...

2. Computing Hardware

3. Outputs/Actions: motors, lights, speakers...

Our robot: Scribbler

Obstacle sensor detector

Scribbler inside

Formal specification of actions

- Fact of life in computing: hardware is "dumb"
- Forces us to make nebulous concepts precise
 What is an obstacle? Language? Music? Intelligence?

- Running themes:
 - What is machine "intelligence"?
 - Are there limits?

Controlling Scribbler: Give it a "Program"

File Edit Tools Mode Help Commands		
Motor LED Pause Sound If <condition> Then Else Do End Program Basic Motor Control Stop Forward Reverse Left Turn Right Turn Left Spin Right Spin</condition>	Move Forward for 1s Pause 0.5s Move Back for 1s END	"Simple instruction"

"Compound" instructions

If <condition> then ... else Do for ... times ...; Do while Do while not ...

Always remember... (esp. for Scribbler labs):

□ Microprocessor can do one thing at a time

□ Very fast -- 20 million operations per second!

Complicated idea usually requires compound instruction.

Semantics of "Do While.."; a discussion

Why programmable?

Benefits of a programmable device:

FlexibleMulti-useUniversal

Example 1: As a burglar alarm

Beep!

If beam interrupted...

Example 2: As an artiste

Interesting note: Scribbler is even more "stupid" than you think

Do forever { Move Forward for 1s Move back for 1s } END

"Translator" written by Rajesh Poddar '08 3 pages of stuff like

GOTO Main

SenseObs: FREQOUT ObsTxLeft, 1, 38500 IF (ObsRx = 0) THEN object_left = 1 ELSE object_left = 0 LOW ObsTxLeft FREQOUT ObsTxRight, 1, 38500 IF (ObsRx = 0) THEN object_right = 1 ELSE object_right = 0 LOW ObsTxRight RETURN

SenseLine: HIGH LineEnable line_right = LineRight line_left = LineLeft LOW LineEnable

Where are things going?

"Small cleaning agents" – Brooks

Where are things going?

DARPA Grand Challenge (\$2 M prize):

- 132 mile race in the desert
- No human control!
- 5 teams, Stanford won in ~7 hours

The Princeton Entry

Undergraduate Project; reached the finals

Where are we going?

Where are things going?

Automated highways

(From Minority Report)

Being actively researched

What is going inside us?

"Da Vinci" Robotic surgery system

 More precise, though often still controlled by human

Why are multi-purpose robots so hard to build?

- Need precise instruments that act like: eyes, ears, hands, fingers, ...
- Need smart ways ("algorithms") to use sensor data (ex: human eyesight vs. highres camera)

REMINDERS

This week's reading: Brooks pp 12-21, pp 32-51.

This week's lab: Web 2.0

(Take-home lab – posted on course web page.)