COS 116: The Computational Universe

Sanjeev Arora Spring 2011

M

COS 116: The Computational Universe

- Instructor: Sanjeev Arora
- TA: Dominic Kao
- Lab
 - □ Wed 7:30-10:20pm, Friend 007
 - □ This week only: take-home lab
- Course homepage: http://www.cs.princeton.edu/courses/archive/spring11/cos116/ (copyrighted material on blackboard site)

Ancient dream: "Breathe life into matter"

Golem (Jewish mythology)

Frankenstein (Shelley 1818)

Automaton (Europe)

Robot (Capek 1920)

Breathing life into matter...

NB: Military was a major sponsor of computational research in 20th century

Computation strikes back....

Egypt Revolution 2011

Egypt Revolution 2011 Videos (LIVE UPDATES) Page 1, Page 2, Page 3, Page 4, Page 5, Page 6, Page 7, Page 8, Page 9

"Breathe life into matter" — Another perspective

"Breathe life into matter" – A 20th century perspective

"Matter": Atoms, molecules, quantum mechanics, relativity ...

■ "Life": Cells, nucleus, DNA, RNA, ...

"Breathe life into matter": Computation

One interpretation: Make matter do useful, interesting things on its own

Computational Universe

Some important distinctions

Computer Science

vs. Computer Programming (Java, C++, etc.)

Notion of computation

vs. Specific implementation (Silicon, robots, Xbox, etc.)

No programming in this course!

Not necessary for understanding

- More time for us to cover computer science (COS 116 broader than COS126!)
- No advantage to those who have prior programming experience

Brief history of computation

- Technological:
 - ☐ Mechanical Clocks (13th century)
 - Clockwork "Automata"
 - ☐ Mechanized looms, steam engines
 - □ Vacuum tubes, electronic calculators (1910-1930's)
 - □ ENIAC (1945)
 - □ von Neumann Computer (1949, Princeton)
 - ☐ First PCs, 1970s

м

Brief history of computation

- Intellectual
 - □ Ancient Greeks, philosophers
 - (How to "formalize thought")
 - □ Boolean logic (G. Boole, 1815-1864)
 - □ Crisis in math
 - Hilbert: Call to systematize math
 - Gödel: Incompleteness theorem
 - □ Lambda calculus (A. Church, 1936)
 - □ Turing machines (A. Turing, 1937)

Both at Princeton;

First clear notion of "What is computation?"

Computer Science: A new way of looking at the world

Example 1:

Example 2: Public closed-ballot elections

- Hold an election in this room
 - □ Everyone speaks publicly (no computers, email, etc.)
 - □ End: everyone agrees on who won and margin
 - No one knows how anyone else voted
- Is this possible?
 - □ Yes! (A. Yao, Princeton)

Example 3: Computational Biology

COS 116

- First 10 lectures:
 - Cool things computers do and how
- Next 8 lectures:
 - □ What's inside computers, silicon chips, internet.
- Last 6 lectures:
 - Complexity, cryptography, viruses, search engines, artificial intelligence

This week's reading: Brooks pp 12-21, pp 32-51. (on blackboard)

This week's lab: Web 2.0

(Take-home lab – will be posted by Tues night)

Grading

■ Midterm: 15%

■ Final: 35%

Lab reports: 35%

Participation (class, blog): 15%

Attendance expected at lectures and labs

Next couple labs: Scribbler. What determines its behavior?

