Fine Hall Library

From: DocDel [docdel@Princeton.EDU]
Sent: Monday, February 02, 2004 9:14 AM
To: finelib@Princeton.EDU

Subject: Document Delivery Pull Slip

THIS ITEM WAS REQUESTED BY: Engineering on 2/2/2004 9:12:48 AM

Please scan and finish this article for Article Express located at SM.

ILLiad Transaction Number: 115738

This request is for: Sanjeev Arora (arora)
Delivery Method: Hold for Pickup
Electronic Delivery: Yes

Call Number: QA7.M3447
Branch Location: SM

Journal Title: Mathematics Today-Twelve Informal Essays
Article Author: M. Davis
Article Title: What is a computation?

Journal Vol: Journal Issue:
Journal Month: Journal Year: 1978
Article Pages: 241-267

This reguest has been sent by bc - Borrowing.
ILLiad Transaction Number: 115738

Thank you,
Article Express Staff

Barb in ST

Thank you.
¢

What is a Computation?

Martin Davis

On numerous occasions during the Second World War, members of the Ger-
man high command had reason to believe that the allies knew the contents of
some of their most secret communications. Naturally, the Nazi leadership
was most eager to locate and eliminate this dangerous leak. They were con-
vinced that the problem was one of treachery. The one thing they did not
suspect was the simple truth: the British were able to systematically deci-
pher their secret codes. These codes were based on a special machine, the
“Enigma,” which the German experts were convinced produced coded mes-
sages that were entirely secure. In fact, a young English mathematician,
Alan Turing, had designed a special machine for the purpose of decoding
messages enciphered using the Enigma. This is not the appropriate place to
speculate on the extent to which the course of history might have been dif-
ferent without Turing’s ingenious device, but it can hardly be doubted that it
played an extremely important role.

In this essay we will discuss some work which Alan Turing did a few
years before the Second World War whose consequences are still being de-
veloped. What Turing did around 1936 was to give a cogent and complete
logical analysis of the notion of “computation.” Thus it was that although
people have been computing for centuries, it has only been since 1936 that
we have possessed a satisfactory answer to the question: ‘“What is a compu-
tation?”” Turing’s analysis provided the framework for important mathemati-
cal investigations in a number of directions, and we shall survey a few of
them.

Turing’s analysis of the computation process led to the conclusion that it
should be possible to construct “universal” computers which could be
programmed to carry out any possible computation. The existence of a logi-
cal analysis of the computation process also made it possible to show that

242 What Is a Computation?

Alan M. Turing

Alan M. Turingwas bornin 1912, the second sonin anupperclass Eng-
lish family. After aprecociouschildhood, he had adistinguished career as
a student at Cambridge University. It was shortly after graduation that
Turing published his revolutionary work on computability. Turing’s in-
volvement in the deciphering of German secret codes during the Second
World War has only recently become public knowledge. His work has
included important contributions to mathematical logic and other
branches of mathematics. He was one of the first to write about the possi-
bility of computer intelligence and his writings on the subject are still
regarded as fundamental. His death of cyanide poisoning in June 1954
was officially adjudged suicide.

certain mathematical problems are incapable of computational solution, that
they are, as one says, unsolvable. Turing himself gave some simple examples
of unsolvable problems. Later investigators found that many mathematical

Martin Davis 243

problems for which computational solutions had been sought unsuccessfully
for many years were, in fact, unsolvable. Turing’s logical proof of the exis-
tence of “‘universal”’ computers was prophetic of the modern all-purpose
digital computer and played a key role in the thinking of such pioneers in the
development of modern computers as John von Neumann. (Likely these
ideas also played a role in Turing’s seeing how to translate his crytographic
work on the German codes into a working machine.) Along with the devel-
opment of modern computers has come a new branch of applied mathemat-
ics: theory of computation, the application of mathematics to the theoretical
understanding of computation. Not surprisingly, Turing’s analysis of compu-
tation has played a pivotal role in this development.

Although Turing’s work on giving a precise explication of the notion of
computation was fundamental because of the cogency and completeness of
his analysis, it should be stated that various other mathematicians were in-
dependently working on this problem at about the same time, and that a
number of their formulations have turned out to be logically equivalent to
that of Turing. In fact the specific formulation we will use is closest to one
originally due to the American mathematician Emil Post.

The Turing —Post Language

Turing based his precise definition of computation on an analysis of what a
human being actually does when he computes. Such a person is following a
set of rules which must be carried out in a completely mechanical manner.
Ingenuity may well be involved in setting up these rules so that a computa-
tion may be carried out efficiently, but once the rules are laid down, they
must be carried out in a mercilessly exact way. If we watch a human being
calculating something (whether he is carrying out a long division, performing
an algebraic manipulation, or doing a calculus problem), we observe symbols
being written, say on a piece of paper, and the behavior of the person doing
the calculating changing as he notes various specific symbols appearing as
results of computation steps.

The problem which Turing faced and solved was this: how can one extract
from this process what is essential and eliminate what is irrelevant? Of
course some things are clearly irrelevant; obviously it does not matter
whether our calculator is or is not drinking coffee as he works, whether he is
using pencil or pen, or whether his paper is lined, unlined, or quadruled. Tur-
ing’s method was to introduce a series of restrictions on the calculator’s be-
havior, each of which could clearly be seen to be inessential. However,
when he was done all that was left were a few very simple basic steps per-
formed over and over again many times.

We shall trace Turing’s argument. In the first place, he argued that we can
restrict the calculator to write on a linear medium, that is, on a tape, rather

244 What Is a Computation?

Emil L. Post

Emil L. Post was bornin Poland in 1897, but arrived in New York City
atthe age of seven, and lived there for the remainder of hislife. His life was
plagued by tragic problems: he lost his left arm while still a child and was
troubled as an adult by recurring episodes of a disabling mental illness.
While still an undergraduate at City College he worked out a general-

i ization of the differential calculus which later turned outto be of practical
importance. His doctoral dissertation at Columbia University initiated
the modern metamathematical method in logic. His researches while a

. postdoctoral fellowat Princetonin the early 1920’santicipated later work
of Godel and Turing, but remained unpublished until much later, partly
because of the lack of a receptive atmosphere for such work at the time,

i and partly because Post never completed the definitive development he
was seeking. His work in computability theory included the independent
discovery of Turing’s analysis of the computation process, various im-
portant unsolvability results, and the first investigations into degrees of
unsolvability (which provide aclassification ofunsolvable problems). He

§ died quite unexpectedly in 1954 while under medical care.

Martin Davis 245

than on a two-dimensional sheet of paper. Instead of paper tape (such as is
used in an adding machine) we can, if we prefer, think of magnetic tape as
used in a tape recorder. (Of course, in this latter case, the symbols occur as
magnetic signals rather than as marks on paper, but conceptually this makes
no difference whatsoever.) It is easy to convince oneself that the use of a
two-dimensional sheet of paper plays no essential role in the computational
process and that we really are not giving up any computational power by re-
stricting ourselves to a linear tape. Thus the “two-dimensional’” multiplica-
tion:

26
X 32
52
780
832

can be written on a “tape” as follows:
26 X 32 =52 + 780 = 832.

We suppose that the linear tape is marked off into individual squares and that
only one symbol can occupy a square. Again, this is a matter of convenience
and involves no particular limitations. So, our multiplication example might
look like this:

[2]6[x[3[2]=[s]2]+]7]8]of=]8]3]2]

The next restriction we impose (here we are actually going a bit further
than Turing did) is that the only symbols which may appear on our tape are 0
and 1. Here we are merely making use of the familiar fact that all information
can be “coded” in terms of two symbols. It is this fact, for example, which
furnishes the basis for Morse code in which the letters of the alphabet are
represented as strings of “‘dots’” and ‘‘dashes.” Another example is binary
arithmetric which forms the basis of modern digital computation.

Our next restriction has to do with the number of different symbols our
calculator can take note of (or as we shall say, ‘““scan’) in a single observa-
tion. How many different symbols can a human calculator actually take in at
one time? Certainly no one will be able to take in at a glance the distinction
between two very long strings of zeros and ones which differ only at one
place somewhere in the middle. One can take in at a glance, perhaps, five,
six, seven, or eight symbols. Turing’s restriction was more drastic. He as-
sumed that in fact one can take in only a single symbol at a glance. To see
that this places no essential restriction on what our calculator can ac-
complish, it suffices to realize that whatever he does as a result of scanning a
group of, say, five symbols can always be broken up into separate operations
performed viewing the symbols one at a time.

What kinds of things can the calculator actually do? He can replace a 0 by

246 What Is a Computation?

a |l oral by a 0 on the square he is scanning at any particular moment, or he
can decide to shift his attention to another square. Turing assumed that this
shifting of attention is restricted to a square which is the immediate neigh-
bor, either on the left or on the right, of the square previously scanned.
Again, this is obviously no essential restriction: if one wants to shift one’s at-
tention to a square three to the right, one simply shifts one to the right three
successive times. Also the calculator may observe the symbol in the square
being scanned and make a decision accordingly. And presumably this
decision should take the form: *“Which instruction shall 1 carry out next?”’
Finally, the calculator may halt, signifying the end of the computation.

To summarize: any computation can be thought of as being carried out by
a human calculator, working with strings of zeros and ones written on a
linear tape, who executes instructions of the form:

Write the symbol 1

Write the symbol 0

Move one square to the right

Move one square to the left

Observe the symbol currently scanned and choose the next step accord-
ingly

Stop

The procedure which our calculator is carrying out then takes the form of
a list of instructions of these kinds. As in modern computing practice, it is
convenient to think of these kinds of instructions as constituting a special
programming language. A list of such instructions written in this language is
then called a program.

We are now ready to introduce the Turing—Post Programming Language.
In this language there are seven kinds of instructions:

PRINT 1

PRINT 0

GO RIGHT

GO LEFT

GO TO STEP i IF 1 1S SCANNED
GO TO STEP i IF 0 IS SCANNED
STOP

A Turing-Post program is then a list of instructions, each of which is of one
of these seven kinds. Of course in an actual program the letter i in a step of
either the fifth or sixth kind must be replaced by a definite (positive whole)
number.

In order that a particular Turing—Post program begin to calculate, it must
have some “‘input’’ data. That is, the program must begin scanning at a spe-
cific square of a tape already containing a sequence of zeros and ones. The

Martin Davis 247

. PRINT 0

. GO TO STEP 2 IF 1 1S SCANNED
PRINT 1

GO RIGHT

GO TO STEP 5 IF 1 IS SCANNED
PRINT 1

GO RIGHT

. GO TO STEP 1 IF 1 IS SCANNED
STOP

SomNomap

-

Figure 1. Doubling Program

symbol 0 functions as a “‘blank”; although the entire tape is infinite, there are
never more than a finite number of ones that appear on it in the course of a
computation. (A reader who is disturbed by the notion of an infinite tape can
replace it for our purposes by a finite tape to which blank squares—that is,
squares filled with zeros—are attached to the left or the right whenever
necessary.)

Figure 1 exhibits a Turing—Post program consisting of ten instructions
which we will use repeatedly for illustrative purposes. The presence of the
“GO TO” instruction makes it possible for the same instruction to be ex-
ecuted over and over again in the course of a single computation. This can be
seen in some detail in Figure 2 which shows the successive steps in one par-
ticular computation by the program of Figure 1. The computation is com-
pletely determined by the initial arrangement of symbols on the tape
together with a specification of which square is initially scanned. In Figure 2
this latter information is given by an upward arrow (1) below the scanned
square. (Of course only a finite number of symbols from the tape can actual-
ly be explicitly exhibited; in Figure 3, we exhibit six adjacent symbols, and
assume that all squares not explicitly shown are blank, that is contain the
symbol 0.) Such combined information, consisting of the symbols on the
tape (pictorially represented by showing a finite number of consecutive
squares, the remainder of which are presumed to be blank) and the identity
of the scanned square (designated by an arrow just below it) is called a tape
configuration.

Figure 2 gives a list of such tape configurations, with the initial configura-
tion at the top, each of which is transformed by an appropriate step of the
program (from Figure 1) into the configuration shown below it. The program
steps are listed alongside the tape configurations. The computation begins by
executing the first step (which in our case results in replacing the 1 on the
scanned square by 0) and continues through the successive steps of the pro-
gram, except as “GO TO” instructions cause the computation to return to
earlier instructions. Ultimately, Step 9 is executed with the tape configura-
tion as shown at the bottom of Figure 2. Since 0 is being scanned, the com-
putation continues to Step 10 and then halts.

248 What is a Computation?

Tape Configuration Program Step
001100 - 1
i)
000100 2
i)
000100 4
i)
010100 5
i)
010100 7
1
011100 8
i)
011100 1
i)
011000 2
)
011000 2
i)
011000 2
i)
011000 4
1
111000 5
1
111000 5
i)
111000 5
i)
111000 7
i)
1 11100 8
)
111100 --- 10
i)

Figure 2. Steps in a Computation by Doubling Program

Martin Davis 249

Given an alphabet of three symbols a, b, ¢, and three equations

ba = abc
bc = cbha
ac=ca

we can obtain other equations by substitution:

bac = abcc

bac = bca = cbaa = cabca = cabca = acbca = . . .
or = cabea = cabac = . ..
or = cabca = cacbhaa= . ..

(The expressions in boldface type are the symbols about to be
replaced.) In this context can be raised questions such as: “Can we
deduce from the three equations listed above that bacabca = acbca?”
The word problem defined by the three equations is the general ques-
tion: to determine of an arbitrary given equation between two words,
whether or not it can be deduced from the three given equations.

Figure 3. A Word Problem

The computation shown in Figure 2 begins with two ones on the tape and
ends with four. It is because this happens generally that we call the program
in Figure 1 a “‘doubling program.” To put it precisely: beginning with a tape
configuration the nonblank portion of which consists of a row of ones with
the scanned square containing the leftmost of the ones, the doubling program
will eventually halt with a block of twice as many ones on the tape as were
there to begin with. It is by no means obvious at a glance (even to an experi-
enced computer programmer) that our doubling program really behaves in
the manner just stated. Readers who want to understand how the doubling
program works may examine the ‘‘flow chart” in the box on p. 250.

The fact that this doubling program is so short and accomplishes such a
simple task should not be permitted to obscure the point of Turing’s analysis
of the computation process: we have reason to be confident that any compu-
tation whatsoever can be carried out by a suitable Turing—Post program.

As we have seen, once a STOP instruction is executed, computation
comes to a halt. If, however, no STOP instruction is ever encountered in the
course of a computation, the computation will (in principle, of course) con-
tinue forever. The question ‘““When can we say that a computation will even-
tually halt?” will play a crucial role later in our discussion. To see how this
can be answered in a simple example, consider the following three-step Tur-
ing—Post program:

1. GO RIGHT
2. GO TO STEP 1 IF 0 IS SCANNED
3. STOP

250 What is a Computation?

Flow Chart for Doubling Program

Erase a 1 Move Copy 1;

to be “copied.” left That is:
That is: seeking Print 1 on
Print 0 a blank blank square

Step 1 Steps 2, 3 Step 4

Restore erased Move
1 and move right
one square seeking
to the right a blank

Steps 7, 8 Steps 5, 6

Stop

Step 10

The diagram above shows schematically how the doubling program
listed in Figure 1 actually works. The underlying idea is to double the
number of ones by simply copying them one ata time. Each 1 tobe copied
is (temporarily) replaced by a 0 which acts as a place marker (Step 1).
Next thecomputation movesleft overall the ones (whichas the computa-
tion progresses will include newly printed ones) seeking the first unused
(i.e., blank) square (Steps 2, 3—which will be repeated over and over
again until a blank square is encountered). The 1 is now copied (Step 4).
Next the computation returns rightward until it encounters the 0 which
takes the place of the 1 which has just been copied (Steps 5,6—which
again are repeated). The copied 1 is restored (Step 7). The computation
moves one square to the right seeking another 1 tocopy (Step 8). Ifthereis
another 1 to be copied the computation goes back to Step 1; otherwise it
advances to Step 10 and halts (Steps 9, 10).

This program will halt as soon as motion to the right reaches a square con-
taining the symbol 1. For once that happens the program will move on to
Step 3 and halt. That being the case, suppose we begin with a tape on which
there are no ones to the right of the initially scanned square. (For example,
the entire tape could be blank or there could be some ones but all to the left
of the initially scanned square.) In this case, the first two steps will be
carried out over and over again forever, since a 1 will never be encoun-
tered. After step 2 is performed, step 1 will be performed again. This
makes it clear that a computation from a Turing—Post program need not
actually ever halt. In the case of this simple three-step program it is very
easy to tell from the initial tape configuration whether the computation will

Martin Davis 251

eventually halt or continue forever: to repeat, if there is a 1 to the right of
the initially scanned square the computation will eventually halt; whereas if
there are only blanks to the right of the initially scanned square the compu-
tation will continue forever. We shall see later that the question of predict-
ing whether a particular Turing—Post program will eventually halt contains
surprising subtleites.

Codes for Turing—Post Programs

All of the dramatic consequences of Turing’s analysis of the computation
process proceed from Turing’s realization that it is possible to encode a Tur-
ing—Post program by a string of zeros and ones. Since such a string can itself
be placed on the tape being used by another (or even the same) Turing—Post
program, this leads to the possibility of thinking of Turing—Post programs as
being capable of performing computations on other Turing—Post programs.

There are many ways by which Turing—Post programs can be encoded by
strings of zeros and ones. We shall describe one such way. We first represent
each Turing—Post instruction by an appropriate sequence of zeros and ones
according to the following code:

Code Instruction

000 PRINT O
001 PRINT 1
010 GO LEFT
011 GO RIGHT
1010...01 GO TO STEP i IF 0 IS SCANNED
N, s’

1101.5.10 GO TO STEP i IF 1 1S SCANNED
h,'—l
‘100 sTOP

This table gives the representation of each Turing—Post instruction by a
string of zeros and ones. For example the code for the instruction

GO TO STEP 3 IF 0 IS SCANNED

is: 1010001. To represent an entire program, we simply write down in order

the representation of each individual instruction and then place an additional

1 at the very beginning and 111 at the very end as punctuation marks.
For example here is the code for the doubling program shown in Figure 1:

100001011011000101111011111000101111010100111

To make this clear, here is the breakdown of this code:

252 What is a Computation?

Begin Step Step Step Step Step Step Step Step Step Step End
1 2 3 4 5 6 7 8 9 10
1 000 010 110110 001 O11 110111110 001 011 11010 100 111

It is important to notice that the code of a Turing—Post program can be -
deciphered in a unique, direct, and straightforward way, yielding the pro-
gram of which it is the code. First remove the initial 1 and the final 111
which are just punctuation marks. Then, proceeding from left to right, mark
off the first group of 3 digits. If this group of 3 digits is 000,001, 010,011, or
100 the corresponding instructoin is: PRINT 0, PRINT 1, GO LEFT, GO
RIGHT, or STOP, respectively. Otherwise the group of 3 digits is 101 or 110,
and the first instruction is a ‘GO TO.” The code will then have one of the
forms:

10100...01 11011...10
St e
i i

corresponding to

GO TO STEP i IF 0 IS SCANNED

and

GO TO STEP i IF 1 IS SCANNED

respectively. Having obtained the first instruction, cross out its code and
continue the process, still proceeding from left to right. Readers who wish to
test their understanding of this process may try to decode the string:

101000110100110000010101010111

The Universal Program

We are now ready to see how Turing’s analysis of the computation process
together with the method for coding Turing—Post programs we have just in-
troduced leads to a conclusion that at first sight seems quite astonishing.
Namely, there exists a single (appropriately constructed) Turing—Post pro-
gram which can compute anything whatever that is computable. Such a pro-
gram U (for “universal”) can be induced to simulate the behavior of any
given Turing—Post program P by simply placing code (P), the string of zeros
and ones which represents P, on a tape and permitting U to operate on it.
More precisely, the non-blank portion of the tape is to consist of code (P)
followed by an input string v on which P can work. (For clarity, we employ
capital letters to stand for particular Turing—Post programs and lowercase

Mariin Davis 253

The tape

2030000 0a000ANg S Eua0ND 0000 00ga0Can0na0anEannannaa

can be decomposed as follows:

1 000010110110001011110111110001011110101001 111 11
\ s e\ i -

Begin Coded instructions of doubling program End Input

letters to stand for strings of zeros and ones.) For example, the string shown
in the box above signifies that U should simulate the behavior of the
doubling program when 11 is the input. Thus, at the end of the computation
by U, the tape should look just like the final tape in Figure 2.

Now, a universal Turing—Post program U is supposed to perform in this
way not only for our doubling program, but for every Turing~Post program.
Let us be precise: U is to begin its computation presented with a tape whose
nonblank portion consists of code (P) for some Turing—Post program P (ini-
tially scanning the first symbol, necessarily 1, of this code) followed by a
string v. U is then supposed to compute exactly the same result as the pro-
gram P would get when starting with the string v as the nonblank part of the
tape (scanning the initial symbol of v). Such a program U can then be used to
simulate any desired Turing—Post program P by simply placing the string
code (P) on the tape.

What reason do we have for believing that there is such a program U? To
help convince ourselves, let us begin by thinking how a human calculator
could do what U is supposed to do. Faced with the tape contents on which U
is supposed to work, such a person could begin by scanning this string of
zeros and ones, from left to right, searching for the first place that 3 consecu-
tive ones appear. This triple 111 marks the end of code (P) and the beginning
of the input string. Our human calculator can then write code (P) on one
sheet of paper and the input string on another. As already explained, he can
decode the string code (P) and obtain the actual Turing—Post program P. Fi-
nally, he can *‘play machine,” carrying out the instruction of P, applied to the
given input string in a robotlike fashion. If and when the computation comes
to a halt, our calculator can report the final tape contents as output. This
shows that a human calculator can do what we would like U to do. But now,
invoking Turing’s analysis of the computation process, we are led to believe
that there must be a Turing—Post program which can carry out the process
we have just described, a universal Turing—Post program.

The evidence we have given for the existence of such a program is rather
unsatisfactory because it _depends on Turing’s analysis of the computation

254 What is a Computation?

process. It certainly is not a mathematical proof. But in fact, if one is willing
to do some tedious but not very difficult work, one can circumvent the need
to refer to Turing’s analysis at all and can, in fact, write out in detail an ex-
plicit universal Turing—Post program. This was done in fact by Turing him-
self (in a slightly different, but entirely equivalent context) in his fundamen-
tal 1936 paper. And subsequently, it has been redone many times. The suc-
cess of the construction of the universal program is in itself evidence for the
correctness of Turing’s analysis. It is not appropriate here to carry out the
construction of a universal program in detail; we hope, merely, that the
reader is convinced that such a program exists. (Experienced computer
programmers will have no difficulty in writing their own universal program if
they wish to do so.)

We have conceived of Turing~Post programs as consisting of lists of writ-
ten instructions. But clearly, given any particular Turing—Post program P, it
would be possible to build a machine that would actually carry out the in-
structions of P in sequence, In particular, this can be done for our universal
program U. The machine we get in this way would be an example of an all-
purpose or universal computing machine. The code for a particular program
P placed on its tape could then be thought of as a “‘program” for doing the
computation which P does. Thus, Turing’s analysis leads us, in a very
straightforward manner, to the concept of an all-purpose computer which
can be programmed to carry out any computation whatever.

The Halting Problem

We are now in a position to demonstrate a truly astonishing result: we are
able to state a simple problem, the so-called halting problem, for which we
can prove that no computational solution exists.

The halting problem for a particular Turing—Post program is the problem
of distinguishing between initial tape configurations which lead to the pro-
gram’s eventually halting and initial tape configurations which lead the pro-
gram to compute forever. We saw above that certain input strings may cause
a particular program to run forever, due to an infinite loop caused by the
“GO TO” instruction. It would surely be desirable to have a method for de-
termining in advance which input data leads the program to halt and which
does not. This is the halting problem: given a particular Turing—Post pro-
gram, can we computationally test a given tape configuration to see whether
or not the program will eventually halt when begun with that tape configura-
tion.

The answer is no. There is no computaton procedure for testing a given
tape expression to determine whether or not the universal program U will
eventually halt when begun with that tape configuration. The fact that there
is no such procedure for the universal program shows of course that there
can’t be such procedures for Turing—Post programs in general, since the uni-

Martin Davis 255

versal program is itself a Turing—Post program. Before we see how this un-
solvability theorem can be proved, it is worthwhile to reflect on how exciting
and remarkable it is that it should be possible to prove such a result. Here is
a problem which is easy to state and easy to understand which we know can-
not be solved. Note that we are not saying simply that we don’t know how to
solve the problem, or that the solution is difficult. We are saying: there is no
solution.

Readers may be reminded of the fact that the classical problems of angle
trisection and circle squaring also turned out to have no solution. This is a
good analogy, but with a very significant difference: the impossibility proofs
for angle trisection and circle squaring are for constructions using specific in-
struments (straightedge and compass); using more powerful instruments,
there is no difficulty with either of these geometric construction problems.
Matters are quite different with the halting problem; here what we will show
is that there is no solution using any methods available to human beings.

The proof of the unsolvability of the halting problem is remarkably simple.
It uses the method known as indirect proof or reductio ad absurdum. That
is, we suppose that what is stated in italics above is false, that in fact, we
possess a computing procedure which, given an initial tape configuration will
enable us to determine whether or not the universal program will eventually
halt when started in that configuration. Then we show that this supposition is
impossible; this is done in the box on p. 256.

Other Unsolvable Problems

In the 1920’s the great German mathematician David Hilbert pointed to a
certain problem as the fundamental problem of the newly developing field of
mathematical logic. This problem, which we may call the decision problem
for elementary logic, can be explained as follows: a finite list of statements
called premises is given together with an additional statement called the
conclusion. The logical structure of the statements is to be explicitly
exhibited in terms of ““not,”” “and,” “‘or,” “‘implies,”” ‘‘for all,” and ‘“‘there
exists.” Hilbert wanted a computing procedure for testing whether or not the
conclusion can be deduced using the rules of logic from the premises. Hil-
bert regarded this problem as especially important because he expected that
its solution would lead to a purely mechanical technique for settling the truth
or falsity of the most diverse mathematical statements. (Such statements
could be taken as the conclusion, and an appropriate list of axioms as the
premises to which the supposed computing procedure could be applied.)
Thus the very existence of an unsolvable mathematical problem (in particu-
lar, the halting problem) immediately suggested that Hilbert’s decision
problem for elementary logic was itself unsolvable. This conclusion turned
out to be correct, as was carefully shown by Turing and, quite indepen-
dently, by the American logician Alonzo Church. Turing represented the

-

256 What is a Computation?

Unsolvability of Halting Problem

Suppose we possess a computing procedure which solves the halt-
ing problem for the universal program U. Then we can imagine more
complicated procedures of which this supposed procedure is a part.
Specifically, we consider the following procedure which begins with a
string v of zeros and ones:

1. Try to decode v as the code for a Post-Turing program, i.e., try
to find P with code (P) = v. If there is no such P, go back to the
beginning of Step 1; otherwise go on to Step 2.

. Make a copy of v and place it to the right of v getting a longer
string which we can write as vv (or equivalently as code (P)v
since code (P) = v).

. Use our (pretended) halting problem procedure to find out
whether or not the universal program U will eventually halt if it
begins with this string vv as the nonblank portion of the tape,
scanning the leftmost symbol. If U will eventually halt, go back
to the beginning of Step 3; otherwise stop.

This proposed procedure would eventually stop if, first,
v = code(P) for some Turing—Post program P (so we will leave Step
1 and go on to Step 2), and, second, if also U will never halt if
it begins to scan the leftmost symbol of vv. Since U beginning with
code (P)v simulates the behavior of P beginning with v, we conclude
that our supposed procedure applied to the string v will eventually stop
if and only if v = code(P) where P is a computing procedure that }
will never stop beginning with v on its tape.

By Turing’s analysis, there should be a Turing—Post program P,

| which carries out this very procedure. That is, P, will eventually halt &
beginning with the input v if and only if U will never halt beginning |
with the input vv. Now let v, = code(P;). Does U eventually halt |
beginning with the input v,v,? By what we have just said, P, eventu- |
ally halts beginning with the input v, if and only if U will never halt §
beginning with the input vyv,. But, as we will show, this contradicts
our explanation of how U works as a universal program. Since
v = code(P,), U will act, given the input v,v,, to simulate the behav-
ior of P, when begun on input v,. So U will eventually halt beginning
with the input vyv, if and only if P, will eventually halt beginning with |
the input v,. But this contradicts the previous italicized statement. §
The only way out of this contradiction is to conclude that what we
were pretending is untenable. In other words, the halting problem for
U is not solvable.

Martin Davis 257

theory of Turing—Post programs in logical terms and showed that a solution
to the decision problem for elementary logic would lead to a solution of the
halting problem. (This connection between logic and programs was redis-
covered many years later and now forms the basis for certain investigations
into the problem of proving the correctness of computer programs.)

The unsolvability of the decision problem for elementary logic was impor-
tant, not only because of the particular importance of this problem, but also
because (unlike the halting problem) it was an unsolvable problem that peo-
ple had actually tried to solve. A decade went by before another such ex-
ample turned up. Early in the century the Norwegian Axel Thue had
emphasized the importance of what are now called “word problems.” In
1947, Emil Post showed how the unsolvability of the halting problem leads
to the existence of an unsolvable word problem. Post’s proof is discussed in
the box on p. 258. Here we merely explain what a word problem is.

In formulating a word problem one begins with a (finite) collection, called
an alphabet, of symbols, called letters. Any string of letters is called a word
on the alphabet. A word problem is specified by simply writing down a (fi-
nite) list of equations between words. Figure 3 exhibits a word problem
specified by a list of 3 equations on the alphabet a, b, ¢. From the given
equations many other equations may be derived by making substitutions in
any word of equivalent expressions found in the list of equations. In the ex-
ample of Figure 3, we derive the equation bac = abcc by replacing the part
ba by abc as permitted by the first given equation.

We have explained how to specify the data for a word problem, but we
have not yet stated what the problem is. It is simply the problem of deter-
mining for two arbitrary given words on the given alphabet, whether one
can be transformed into the other by a sequence of substitutions that are le-
gitimate using the given equations. We show in the box on p. 258 that we
can specify a particular word problem that is unsolvable. In other words,
no computational process exists for determining whether or not two words
can be transformed into one another using the given equations. Work on
unsolvable word problems has turned out to be extremely important, lead-
ing to unsolvability results in different parts of mathematics (for example,
in group theory and in topology).

Another important problem that eventually turned out to be unsolvable
first appeared as the tenth in a famous list of problems given by David Hil-
bert in 1900. This problem involves so-called ‘‘Diophantine’ equations. An
equation is called Diophantine when we are only interested in solutions in
integers (i.e., whole numbers). It is easy to see that the equation

4x—2y =3

has no solutions in integers (because the left side would have to be even
while the right side is odd). On the other hand the equation

4x—-y=3

258 What is a Computation?

An Unsolvable Word Probliem

One way to find a word problem that is unsolvable is to invent one
whose solution would lead to a solution for the halting problem,
which we know to be unsolvable. Specifically, we will show how to
use a Turing—Post program P (which we assume consists of n instruc-
tions) to construct a word problem in such a way that a solution to the
word problem we construct could be used to solve the halting
problem for P. Therefore, if we begin with a problem P whose halting
problem is unsolvable, we will obtain an unsolvable word problem.

We will use an alphabet consisting of the n + 4 symbols:

10hq g ... G Gnys:-

The fact that the ith step of P is about to be carried out and that there
is some given tape configuration is coded by a certain word (some-
times called a Post word) in this alphabet. This Post word is con-
structed by writing down the string of zeros and ones constituting the
current nonblank part of the tape, placing an 4 to its left and right (as
punctuation marks) and inserting the symbol g; (remember that it is
the ith instruction which is about to be executed) immediately to the
left of the symbol being scanned. For example, with a tape configura-
tion

11011
T

and instruction number 4 about to be executed, the corresponding
Post word would be

h110g,11h.

This correspondence between tape configurations and words makes
it possible to translate the steps of a program into equations between
words. For example, suppose that the fifth instruction of a certain
program is

PRINT 0.
We translate this instruction into the equations
90=950, g.41=4g50,
which in turn yield the equation between Post words
h110g,11h=h110g501h

corresponding to the next step in the computation. Suppose next that
the fifth instruction is

GO RIGHT.

It requires 6 equations to fully translate this instruction, of which two

Martin Davis 259

typical ones are
gs0 1 =0g1 , gslh=1qs0h.

In a similar manner each of the instructions of a program can be
translated into a list of equations. In particular when the ith instruc-
tion is STOP, the corresponding equation will be:

4i=qdn+1-

So the presence of the symbol g, , , in a Post word serves as a signal
that the computation has halted. Finally, the four equations

dns10=¢as1, Gns1l =qn4y
0Gn+1=Gns1, 1qn+1=0qn+:

serve to transform any Post word containing ¢,., into the word
hq.,. k. Putting all of the pieces together we see how to obtain a
word problem which “translates” any given Turing—Post program.

Now let a Turing—Post program P begin scanning the leftmost sym-
bol of the string v; the corresponding Post word is hq,vh. Then if P
will eventually halt, the equation

hqvh =hq, . h

will be derivable from the corresponding equations as we could show
by following the computation step by step. If on the other hand P will
never halt, it is possible to prove that this same equation will not be
derivable. (The idea of the proof is that every time we use one of the
equations which translates an instruction, we are either carrying the
computation forward, or—in case we substitute from right to left
—undoing a step already taken. So, if P never halts, we can never get
hq,vh equal to any word containing ¢, ,.) Finally, if we could solve
this word problem we could use the solution to test the equation

hqvh=hq,,h

and therefore to solve the halting problem for P. If, therefore, we start
with a Turing-Post program P which we know has an unsolvable
halting problem, we will obtain an unsolvable word problem.

has many (even infinitely many) solutions in integers (e.g., x=1, y = 1;
x =2,y =135). The Pythagorean equation

X4 yr=7z2

also has infinitely many integer solutions (of which x =3, y =4, z =5 was
already known to the ancient Egyptians). Hilbert’s tenth problem was to find
a computing procedure for testing a Diophantine equation (in any number of
unknowns and of any degree) to determine whether or not it has an integer
solution.

260 What is a Computation?

Since I have been directly involved with this problem and related matters
over the past thirty years, my discussion of Hilbert’s tenth problem will nec-
essarily have a rather personal character. I first became interested in the
problem while I was an undergraduate at City College of New York on read-
ing my teacher Emil Post’s remark in one of his papers that the problem
“begs for an unsolvability proof.” In my doctoral dissertation at Princeton, I
proved the unsolvability of a more difficult (and hence easier to prove unsolv-
able) related problem. At the International Congress of Mathematicians in
1950, I was delighted to learn that Julia Robinson, a young mathematician
from California, had been working on the same problem from a different di-
rection: she had been developing ingenious techniques for expressing
various complicated mathematical relationships using Diophantine equa-
tions. A decade later Hilary Putnam (a philosopher with training in mathe-
matical logic) and I, working together, saw how we could make further
progress by combining Julia Robinson’s methods with mine. Julia Robinson
improved our results still further, and we three then published a joint paper
in which we proved that if there were even one Diophantine equation whose
solutions satisfy a special condition (involving the relative size of the
numbers constituting such a solution), then Hilbert’s tenth problem would
be unsolvable.

In subsequent years, much of my effort was devoted to seeking such a
Diophantine equation (working alone and also with Hilary Putnam), but
with no success. Finally such an equation was found in 1970 by the then
22-year old Russian mathematician Yuri Matiyasevich. Matiyasevich’s
brilliant proof that his equation satisfied the required condition involved
surprisingly elementary mathematics. His work not only showed that Hil-
bert’s tenth problem is unsolvable, but has also led to much new and inter-
esting work.

Undecidable Statements

The work of Bertrand Russell and Alfred North Whitehead in their three-
volume magnum opus Principia Mathematica, completed by 1920, made it
clear that all existing mathematical proofs could be translated into the specif-
ic logical system they had provided. It was assumed without question by
most mathematicians that this system would suffice to prove or disprove any
statement of ordinary mathematics. Therefore mathematicians were
shocked by the discovery in 1931 by Kurt Godel (then a young Viennese
mathematician) that there are statements about the whole numbers which
can neither be proved nor disproved in the logical system of Principia Math-
ematica (or similar systems); such statements are called undecidable. Tur-
ing’s work (which was in part inspired by Godel’s) made it possible to under-
stand Godel’s discovery from a different, and indeed a more general, per-
spective.

Martin Davis 261

Julia B. Robinson

Julia B. Robinson was born in 1919 in St. Louis, Missouri, but has
lived most of her life in California. Her education was at the Univer-
sity of California, Berkeley, where she obtained her doctorate in
1948. She has always been especially fascinated by mathematical
problems which involve both mathematical logic and the theory of
numbers. Her contributions played a key role in the unsolvability
proof for Hilbert’s tenth problem. In 1975 she was elected to the Na-
tional Academy of Sciences, the first woman mathematician to be so
honored.

Let us write N(P, v) to mean that the Turing—Post program P will never
halt when begun with v on its tape (as usual, scanning its leftmost symbol).
So, for any particular Turing—Post program P and string v, N(P, v) is a per-
fectly definite statement which is either true (in case P will never halt in the
described situation) or false (in case P will eventually halt). When N(P, v) is
false, this fact can always be demonstrated by exhibiting the complete
sequence of tape configurations produced by P leading to termination. How-
ever, when N(P, v) is true no finite sequence of tape configurations will suf-
fice to demonstrate the fact, Of course we may still be able to prove that a
particular N(P, v) is true by a logical analysis of P’s behavior.

Let us try to be very rigorous about this notion of proof. Suppose that cer-

262 What is a Computation?

tain strings of symbols (possibly paragraphs of English) have been singled
out as proofs of particular statements of the form N(P, v). Suppose further-
more that we possess a computing procedure that can test an alleged proof I1
that N(P, v) is true and determine whether II is or is not actually such a
proof. Whatever our rules of proof may be, this requirement is surely needed
for communication purposes. It must be possible in principle to perform
such a test in order that II should serve its purpose of eliminating doubts
concerning the truth of N(P, v). (In practice, published mathematical proofs
are in highly condensed form and do not meet this strict requirement. Dis-
putes are resolved by putting in more detail as needed. But it is essential that
in principle it is always possible to include sufficient detail so that proofs are
susceptible to mechanical verification.)

There are two basic requirements which it is natural to demand of our sup-
posed rules of proof:

Soundness: 1If there is a proof II that N(P,v) is true, then P will in
fact never halt when begun with v on its tape.

Completeness: If P will never halt when begun with v on its tape, then
there is a proof II that N(P,v) is true.

Godel’s theorem asserts that no rules of proof can be both sound and
complete! In other words, if a given set of rules of proof is sound, then there
will be some true statement N(P, v) which has no proof II according to the
given rules of proof. (Such a true unprovable statement may be called un-
decidable since it will surely not be disprovable.)

To convince ourselves of the truth of Godel’s theorem, suppose we had
found rules of proof which were both sound and complete. Suppose
“proofs” according to these rules were particular strings of symbols on some
specific finite alphabet. We begin by specifying a particular infinite sequence
I1,, I1,, I1,, . . .which includes all finite strings on this alphabet. Namely, let
all strings of a given length be put in “‘alphabetical’’ order, and let shorter
strings always precede longer ones. The sequence II,, I1,, I15, . . .includes all
possible proofs, as well as a lot of other things; in particular, it contains a
high percentage of total nonsense—strings of symbols combined in com-
pletely meaningless ways. But, hidden among the nonsense, are all possible
proofs.

Now we show how we can use our supposed rules of proof to solve the
halting problem for some given Turing—Post program P. We wish to find out
whether or not P will eventually halt when begun on v. We have some friend
begin to carry out the instructions of P on input v with the understanding that
we will be informed at once if the process halts. Meanwhile we occupy our-
selves by generating the sequence I1,, I1,, IT;, . . . of possible proofs. As each
IT; is generated we use our computing procedure to determine whether or not
I1; is a proof of N(P, v). Now, if P will eventually halt, our friend will dis-
cover the fact and will so inform us. And, if P will never halt, since our
rules of proof are assumed to be complete, there will be a proof II; of

Martin Davis 263

N(P, v) which we will discover. Having obtained this II; we will be sure
(because the rules are sound) that P will indeed never halt. Thus, we have
described a computing procedure (carried out with a little help from a
friend) which would solve the halting problem for P. Since, as we well
know, P can have an unsolvable halting problem (e.g., P could be the uni-
versal program U), we have arrived at a contradiction; this completes the
proof of Godel’s theorem.

Of course, Godel’s theorem does not tell us that there is any particular
pair P, v for which we will never be able to convince ourselves that N(P, v) is
true. It is simply that, for any given sound rules of proof, there will be a pair
P, v for which N (P, v) is true, but not provable using the given rules. There
may well be other sound rules which decide this “undecidable” statement.
But these other rules will in turn have their own undecidabilities.

Complexity and Randomness

A computation is generally carried out in order to obtain a desired answer.
In our discussion so far, we have pretty much ignored the ‘“‘answer,” con-
tenting ourselves with discussing only the gross distinction between a com-
putation which does at least halt eventually and one which goes on forever.
Now we consider the question: how complex need a Turing—Post program
be to produce some given output? This straightforward question will lead us
to a mathematical theory of randomness and then to a dramatic extension of
Godel’s work on undecidability.

We will only consider the case where there are at least 2 ones on the tape
when the computation halts. The output is then to be read as consisting of
the string of zeros and ones between the leftmost and rightmost ones on the
tape, and not counting these extreme ones. Some such convention is neces-
sary because of the infinite string of zeros and ones on the tape. In effect the
first and last one serve merely as punctuation marks.

To make matters definite suppose that we wish to obtain as output a string
consisting of 1022 ones. When we include the additional ones needed for
punctuation, we see that what is required is a computation which on termina-
tion leaves a tape consisting of a block of 1024 ones and otherwise blank.
One way to do this is simply to write the 1024 ones on the tape initially and
do no computing at all. But surely we can do better. We can get a slight im-
provement by using our faithful doubling program (Figure 1). We need only
write 512 ones on the tape and set the doubling program to work. We have
already written out the code for the doubling program; it took 39 bits. (A bit
is simply a zero or a one; the word abbreviates binary digiz.) So we have a
description of a string of 1022 ones which uses 39 + 512 = 551 bits. But
surely we can do better. 1024 = 2'°, so we should be able to get 1024 ones
by starting with 1 and applying the doubling program 10 times. In Figure 4

264 What is a Computation?

1 PRINT 0

9. GO TO STEP 1 IF 1 IS SCANNED
10. GO RIGHT

11. GO TO STEP 22 IF 0 IS SCANNED
12. GO RIGHT

13. GO TO STEP 12 IF 1 1S SCANNED
14. GO LEFT

15. PRINT 0

16. GO LEFT

17. GO TO STEP 16 IF 1 IS SCANNED
18. GO LEFT

19. GO TO STEP 18 IF 1 IS SCANNED
20. GO RIGHT

21. GO TO STEP 1 IF 1 IS SCANNED
22. STOP

Figure 4. A Program for Calculating Powers of 2

we give a 22-step program, the first nine steps of which are identical to the
first nine steps of the doubling program, which accomplishes this. Beginning
with a tape configuration

1011...1
T 7 n

this program will halt with a block of 2**! ones on the tape.

It is not really important that the reader understand how this program
works, but here is a rough account: the program works with two blocks of
ones separated by a zero. The effect of Steps 1 through 9 (which is just the
doubling program) is to double the number of ones to the left of the 0. Steps
10 through 21 then erase 1 of the ones to the right of the zero and return to
Step 1. When all of the ones to the right of the zero have been erased, this
will result in a zero being scanned at Step 11 resulting in a transfer to Step 22
and a halt. Thus the number of ones originally to the left of the zero is
doubled as many times as there are ones originally to the right of the zero.

The full code for the program of Figure 4 contains 155 bits. To obtain the
desired block of 1024 ones we need the input 10111111111. We are thus
down to 155 4+ 11 = 166 bits, a substantial improvement over 551 bits.

We are now ready for a definition. Let w be any string of bits. Then we say
that w has complexity n (or equivalently, information content n) and write
I(w) = n if:

1. There is a program P and string v such that the length of code(P) plus
the length of v is n, and P when begun with v will eventually halt with
output w (that is with 1w1) occupying the nonblank part of the tape,
and

2. There is no number smaller than » for which this is the case.

Martin Davis 265

If w is the string of 1022 ones, then we have shown that /(w) =< 166. In gen-
eral, if w is a string of bits of length n, then we can easily show that
I(w) = n + 9. Specifically, let the program P consist of the single instruction:
STOP. Since this program does not do anything, if it begins with input 1w1,
it will terminate immediately with 1wl still on the tape. Since
Code(P)= 1100111, it must be the case that /(w) is less than or equal to the
length of the string 11001111w1, that is, less than or equal to n + 9. (Natu-
rally, the number 9 is just a technical artifact of our particular formulation
and is of no theoretical importance.)

How many strings are there of length »n such that, say, I(w) = n— 10?
(We assume n > 10; in the interesting cases n is much larger than 10.) Each
such w would be associated with a program P and string v such that
Code(P)v is a string of bits of length less than or equal to n — 10. Since the
total number of strings of bits of length i is 2, there are only:

244+, + 210

strings of bits of length = n — 10. This is the sum of a geometric series easily
calculated to be 2% — 2. So we conclude: there are fewer than 279 strings
of bits w of length r such that /(w) < n— 10.

Since there are 2* strings of bits of length n, we see that the ratio of the
number of strings of length n with complexity < n — 10 to the total number
of strings of length » is no greater than

1 1

2%]

3n TP 512 < 500°

This is less than 0.2%. In other words, more than 99.8% of all strings of
length n have complexity > n — 10. Now the complexity of the string of 1022
ones is, as we know, less than or equal to 166, thus much less than
1022 — 10 = 1012. Of course, what makes this string so special is that the
digit pattern is so regular that a comparatively short computational descrip-
tion is possible. Most strings are irregular or as we may say, random.

Thus we are led to an entirely different application of Turing’s analysis of
computation: a mathematical theory of random strings. This theory was de-
veloped around 1965 by Gregory Chaitin, who was at the time an under-
graduate at City College of New York (and independently by the world
famous A.N. Kolmogorov, a member of the Academy of Sciences of the
U.S.S.R.). Chaitin later showed how his ideas could be used to obtain a dra-
matic extension of Goddel’s incompleteness theorem, and it is with this
reasoning of Chaitin’s that we will conclude this essay.

Let us suppose that we have rules of proof for proving statements of the
form I(w) > n where w is a string of bits and n is a positive integer. As
before, we assume that we have a computing procedure for testing an alleged
proof II to see whether it really is one. We assume that the rules of proof are
sound, so that if I is a proof of the statement /(w) > n, then the complexity
of the string w really is greater than n. Furthermore, let us make the very

266 What is a Computation?

reasonable assumption that we have another computing procedure which,
given a proof I1 of a statement /(w) > n, will furnish us with the specific w
and n for which /(w) > n has been proved.

We now describe a new computing procedure we designate as A. We begin
generating the sequence I1,, Il,, Iy, . . . of possible proofs as above. For each
I1; we perform our test to determine whether or not I, is a proof of a state-
ment of the form /(w) > n. If the answer is affirmative we use our second
procedure to find the specific wand n. Finally we check to see whether
n > ko where kyis some fixed large number. If so, we report w as our answer;
otherwise we go on to the next I1,. By Turing’s analysis this entire procedure
A can be replaced by a Turing—Post program, where the fixed number &, is to
be chosen at least as large as the length of this program. (The fact that £, can
be chosen as large as this is not quite obvious; the basic reason is that far
fewer than k, bits suffice to describe the number 4,.)

Now, a little thought will convince us that this Turing—Post program can
never halt: if it did halt we would have a string w for which we had a proof I1;
that /(w) > n where n > k,. On the other hand this very program has length
less than or equal to 4, (and hence less than n) and has computed w, so that
I(w) < n, in contradiction to the soundness of our proof rules. Conclusion:
our rules of proof can yield a proof of'no statement of the form /(w) > n for
which n > k,. This is Chaitin’s form of Godel’s theorem: given a sound set
of rules of proof for statements of the form /(w) > n, there is a number &,
such that no such statement is provable using the given rules for any n > &,.

To fully understand the devastating import of this result it is important to
realize that there exist rules of proof (presumably sound) for proving state-
ments of the form /(w) > n which include all methods of proof available in
ordinary mathematics. (An example is the system obtained by using the ordi-
nary rules of elementary logic applied to a powerful system of axioms, of
which the most popular is the so-called Zermelo—Fraenkel axioms for set
theory.) We are forced to conclude that there is some definite number k,,
such that it is in principle impossible, by ordinary mathematical methods, to
prove that any string of bits has complexity greater than k,. This is a remark-
able limitation on the power of mathematics as we know it.

Although we have discussed a considerable variety of topics, we have
touched on only a tiny part of the vast amount of work which Turing's analy-
sis of the computation process has made possible. It has become possible to
distinguish not only between solvable and unsolvable problems, but to study
an entire spectrum of “degrees of unsolvability.” The very notion of compu-
tation has been generalized to various infinite contexts. In the theory of for-
mal languages, developed as part of computer science, various limitations on
Turing—Post programs turn out to correspond in a natural way to different
kinds of “‘grammars” for these languages. There has been much work on
what happens to the number of steps and amount of tape needed when the
programs are allowed to operate on several tapes simultaneously instead of
on just one. “Nondeterministic” programs in which a given step may be

Martin Davis 267

followed by several alternative steps have been studied, and a great deal of
work has been done attempting to show that such programs are intrinsically
capable of performing much faster than ordinary Turing—Post programs.
These problems have turned out to be unexpectedly difficult, and much
remains to be done.

Suggestions for Further Reading
General

Chaitin, Gregory. Randomness and mathematical proof. Scientific American 232
(May 1975) 47-52.

Davis, Martin and Hersh, Reuben. Hilbert’s 10th problem. Scientific American 229
(November 1973) 84-91.

Knuth, Donald E. Algorithms. Scientific American 236 (April 1977) 63-80, 148.

Knuth, Donald E. Mathematics and computer science: coping with finiteness. Sci-
ence 194 (December 17, 1976) 1235-1242.

Turing, Sara. Alan M. Turing. W. Heffer, Cambridge, 1959.

Wang, Hao. Games, logic and computers, Scientific American 213 (November
1965) 98-106.

Technical

Davis, Martin. Computability and Unsolvability. McGraw-Hill, Manchester, 1958.

Davis, Martin. Hilbert’s tenth problem is unsolvable. American Mathematical
Monthly 80 (March 1973) 233-269.

Davis, Martin. The Undecidable: Basic Papers on Undecidable Propositions, Un-
solvable Problems and Computable Functions. Raven Pr, New York, 1965.

Davis, Martin. Unsolvable problems. In Handbook of Mathematical Logic, by Jon
Barwise (Ed.). North-Holland, Leyden, 1977.

Minsky, Marvin. Computation: Finite and Infinite Machines. Prentice-Hall,
Englewood Cliffs, 1967.

Rabin, Michael O. Complexity of computations. Comm. Assoc. Comp. Mach. 20
(1977) 625-633.

Trakhtenbrot, B.A. Algorithms and Automatic Computing Machines. D.C. Heath,
Lexington, 1963.

