
Introduction Isabelle Applications: BGP Policy Other work, references

Interactive Theorem Provers & Applications to
Network Problems

Andreas Voellmy
andreas.voellmy@yale.edu

Yale University

April 11, 2010

Introduction Isabelle Applications: BGP Policy Other work, references

Overview

1 Interactive theorem provers
2 Tutorial on Isabelle/HOL.
3 Formalization of a tiny fragment of BGP.
4 References & further work

Introduction Isabelle Applications: BGP Policy Other work, references

Interactive Theorem Proving

An interactive theorem prover (a.k.a. a proof assistant) is a
program which takes as input a formalized mathematical
statement and a putative proof, and checks whether the proof is
valid.

Key ingredients:
1 An expressive formal language and logic, typically a variant

of higher order logic.
2 A program to check proofs and to aid in their construction.
3 A programming language to extend the system with new

proof procedures (e.g. decision procedures).

Introduction Isabelle Applications: BGP Policy Other work, references

Why use theorem provers?

Formalizing maths

You have “proved” some mathematical theorem, but have
found mistakes in it several times; now you want to be sure
there are no more mistakes.
You have made some argument, and believe the
conclusion, but find that the foundations of the argument
are unclear. You want to clarify the foundations.

How confident are you in Gödel’s Incompleteness Theorem?
How about the Four-Color Theorem?

A machine checked proof improves our confidence in a
mathematical claim.

Introduction Isabelle Applications: BGP Policy Other work, references

Why use theorem provers?

Some significant formalized theorems

1 Gödel’s First Incompleteness Theorem (N. Shankar 1986,
others later)

2 Jordan Curve Theorem (T. Hales 2005, others later)
3 Prime Number Theorem (J. Avigad 2004, others later)
4 Four Color Theorem (G. Gonthier 2004)

In 1890, Heawood showed Kempe’s 1879 “proof” was
flawed.
In 1891, Peterson showed Tait’s 1880 “proof” was flawed.

Introduction Isabelle Applications: BGP Policy Other work, references

Why use theorem provers?

System verification

You developed a program/protocol/hardware, but keep
finding bugs. You want to be sure it is correct.
A program/protocol/hardware seems correct, but the
principles of the correctness argument are unclear. Can
you clarify the logic?

How confident are you in the correctness of your C compiler /
OS / TCP library / Chord protocol / security protocol / firewall
policy?

Do you understand why your security protocol is correct and on
what assumptions it depends?

Introduction Isabelle Applications: BGP Policy Other work, references

Why use theorem provers?

Some significant system verifications

Intel verification project: verification of floating point
algorithms assuming correctness of hardware primitives.
(Harrison). Started after an error in a floating-point division
instruction of some Intel Pentium processors cost Intel
$500 million in 1994.

CompCert: verified compiler of a realistic subset of the C
language; the generated machine code behaves according
to the semantics of the source C program. (Leroy, CACM
2009)

seL4: Formal verification of an OS Kernel, assuming
correctness of C compiler, assembly code and hardware.
(Klein et al. SOSP 2009)

Introduction Isabelle Applications: BGP Policy Other work, references

Why use theorem provers?

Verification method - in general

1 Model the system - detailed and complex!;
2 Express all the assumptions;
3 Formalize the specification - complex again; getting this

wrong means building the wrong program!;
4 Verify: Prove that the modelled system satisfies the spec -

Long detailed proofs are error-prone; may involve lots of
math (e.g. floating point verification).

Computers can help:
1 Machine check proofs;
2 Automate proof tasks.

Introduction Isabelle Applications: BGP Policy Other work, references

Theorem provers vs. Automatic Techniques

Limitations of Automatic Techniques

In special cases, we have automatic verification techniques:
Decision procedures for certain theories (e.g. Presburger
arithmetic).
Model checking temporal formulae over finite labelled
transition systems.

Many systems and specifications can not be modelled in these
special cases, and the maths needed do not fall in the
decidable portions of first order logic.

Introduction Isabelle Applications: BGP Policy Other work, references

Theorem provers vs. Automatic Techniques

Theorem Proving - semi-automated

A more general method:
1 Expressive formal language, e.g. ZF set theory,

Higher-order logic (HOL).
2 Proof system + proof checking program.
3 Provide known decision procedures and theorem proving

algorithms.
4 Programmable proof assistant; the system can be

extended with new decision procedures - in a safe way!

Introduction Isabelle Applications: BGP Policy Other work, references

Theorem provers vs. Automatic Techniques

Theorem Provers

There are lots of theorem provers; the most widely used
(arguably): HOL Light, Mizar, Isabelle, Coq.

The Edinburgh LCF project introduced a solution that many
other provers followed:

The system is implemented in an interactive programming
language, giving the user power to develop new proof
procedures.
Theorems are represented by an abstract type, instances
of which can only constructed by applying the logic’s rules
of inference, ensuring the system is safe.

Introduction Isabelle Applications: BGP Policy Other work, references

Higher Order Logic (HOL)

Limitations of First Order Logic (FOL)

Things you can not say in FOL:
One relation is the transitive closure of another relation.
Every bounded set of reals has a least upper bound.
A relation is a well-ordering.

One can say these in second order logic, e.g.:

∀X (∃yXy → ∃y(Xy ∧ ∀z(Xz → y ≤ z)))

Alternatively, one can use set theory.

Introduction Isabelle Applications: BGP Policy Other work, references

Higher Order Logic (HOL)

Higher Order Logic (HOL) is a practical logic

HOL generalizes second order logic to any finite order
Aka Type Theory. Developed by A. Church, L. Henkin, P.
Andrews and others.
Expressive - terms denote individuals, sets, relations,
functions, sets of sets, sets of sets of functions, etc.
Uniform syntax
Simple semantics
Simple, elegant proof system
HOL is practical (W. Farmer).

Introduction Isabelle Applications: BGP Policy Other work, references

Higher Order Logic (HOL)

HOL: Sketch of Simple Type Theory

Types (α, β, . . .):
denote sets;
ι (individuals),
∗ (truth values),
α→ β (functions)

Models:
!

"

#

$
Dι

!

"

#

$
D∗

!

"

#

$
Dι→ι

!

"

#

$
Dι→∗

!

"

#

$
D∗→ι

!

"

#

$
D∗→∗

!

"

#

$
Dι→(ι→ι)

!

"

#

$
Dι→(ι→∗) · · ·

...

Table 2: The Domains of a Standard Model of stt

and d ∈ Dα, let ϕ[(x : α) "→ d] be the variable assignment ϕ′ into M such
that ϕ′((x : α)) = d and ϕ′(X) = ϕ(X) for all X $= (x : α).

The valuation function for M is the binary function V M that takes as
arguments an expression of L and a variable assignment into M and that
satisfies the six conditions below. (We write V M

ϕ (E) instead of V M (E,ϕ).)

1. Let E be a variable (i.e., E is of the form (x : α)). Then V M
ϕ (E) =

ϕ(E).

2. Let E be a constant of L (i.e., E ∈ C). Then V M
ϕ (E) = I(E).

3. Let E be of the form (F @ A). Then V M
ϕ (E) = V M

ϕ (F)(V M
ϕ (A)), the

result of applying the function V M
ϕ (F) to the argument V M

ϕ (A).

4. Let E be of the form (λx : α . B) where B is of type β. Then
V M

ϕ (E) is the function f : Dα → Dβ such that, for each d ∈ Dα,

f(d) = V M
ϕ[(x:α)$→d](B).3

5. Let E be of the form (E1 = E2). If V M
ϕ (E1) = V M

ϕ (E2), then

V M
ϕ (E) = t; otherwise V M

ϕ (E) = f.

6. Let E be of the form (Ix : α . A). If there is a unique d ∈ Dα such
that V M

ϕ[(x:α)$→d](A) = t, then V M
ϕ (E) = d; otherwise V M

ϕ (E) = e(α).3

3Notice that the semantics for function abstraction and definite description is defined
using the same trick (due to Tarski) that is used to define the semantics for universal and
existential quantification in first-order logic.

9

Expressions (Aα,Bβ, . . .) over
(C, τ):

have a type and denote
members of their type.
xα (variable), cτ(c)
(constants),
(λxαBβ)α→β

(fα→βxα)β
Aα = Bα

(Diagram from W. Farmer “Seven
Virtues of Simple Type Theory”)

Introduction Isabelle Applications: BGP Policy Other work, references

Higher Order Logic (HOL)

Higher Order Logic - Examples

Sets of elements of type α are represented by their
characteristic functions, of type α→ ∗.
Functions of two arguments represented in curried form
α→ α→ β.

Binary: Relations: α→ α→ ∗.

Completeness principle of the real numbers:

∀S.((∃x .S(x)) ∧ (∃x .x ub S)) −→ ∃x .x lub S

Introduction Isabelle Applications: BGP Policy Other work, references

Isabelle: a generic theorem prover

Architecture:
Standard ML: Supports meta-logic implementation; Allows
users to extend the system with new decision procedures
Meta Logic: Generic, interactive theorem prover
Object logics: FOL, HOL, ZF
Proof General: User Interface

HOL is the most important object logic:

Isabelle/HOL = Logic + Functional Programming

(Following few slides’ contents taken from C. Ballarin and G. Klein
http://isabelle.in.tum.de/coursematerial/IJCAR04/index.html)

Introduction Isabelle Applications: BGP Policy Other work, references

Isabelle Tutorial

Isabelle Syntax: types & terms

τ ::= ′a | ′b | . . .
| τ ⇒ τ

| bool | nat | . . .
| τ × τ
| τ list
| . . .

typedecl name
types gate = bool⇒ bool⇒ bool

term ::= x | y | . . .
| term term
| λx . term
| . . .

consts sq :: nat⇒ nat
defs sq n ≡ n ∗ n

Introduction Isabelle Applications: BGP Policy Other work, references

Isabelle Tutorial

Meta-logic

Meta-logic provides basic constructs that allow one to encode
other logics:

Implication: =⇒
Equality: ≡
Universal quantifier:

∧

[|A1; . . . ;An|] =⇒ B

is the same as

A1 =⇒ (A2 . . . =⇒ (An =⇒ B) . . .)

Introduction Isabelle Applications: BGP Policy Other work, references

Isabelle Tutorial

HOL Inference Rules

A few HOL rules:∧
x .f (x) = g(x) =⇒ λx .f (x) = λx .g(x)

[|P −→ Q;P|] =⇒ Q

Derived rules: propositional logic
[|P ∧Q|] =⇒ P and [|P ∧Q|] =⇒ Q
[|P;Q|] =⇒ P ∧Q

Derived rules: equality
[|r = s; s = t |] =⇒ r = t
[|s = t |] =⇒ f (s) = f (t)

Introduction Isabelle Applications: BGP Policy Other work, references

Isabelle Tutorial

Proof - “Apply Style”

lemma name: <goal>
apply <method>
apply <method>
...
done

Proof state:
1.

∧
x1 . . . xp.[|A1; . . . ;Am|] =⇒ B

2.
∧

y1 . . . yq.[|C1; . . . ;Cn|] =⇒ D

x1, . . . xp are parameters, A1, . . .Am are assumptions, B is the
subgoal.

Introduction Isabelle Applications: BGP Policy Other work, references

Isabelle Tutorial

Short Isabelle Example

Introduction Isabelle Applications: BGP Policy Other work, references

Isabelle Tutorial

Declarative Proofs

assume "y ∈ ?S"

with ‘?S = f y‘ show False by blast

next
assume "y /∈ ?S"

with ‘?S = f y‘ show False by blast

qed
qed

qed

For a start, the example demonstrates two new constructs:

– let introduces an abbreviation for a term, in our case the witness for the
claim.

– Proof by cases starts a proof by cases. Note that it remains implicit what
the two cases are: it is merely expected that the two subproofs prove P =⇒
?thesis and ¬P =⇒ ?thesis (in that order) for some P.

If you wonder how to obtain y : via the predefined elimination rule [[b ∈ range

f;
�
x. b = f x =⇒ P]] =⇒ P.

Method blast is used because the contradiction does not follow easily by just
a single rule. If you find the proof too cryptic for human consumption, here is a
more detailed version; the beginning up to obtain stays unchanged.

theorem "∃ S. S /∈ range (f :: ’a ⇒ ’a set)"

proof
let ?S = "{x. x /∈ f x}"

show "?S /∈ range f"

proof
assume "?S ∈ range f"

then obtain y where "?S = f y" ..
show False

proof cases

assume "y ∈ ?S"

hence "y /∈ f y" by simp

hence "y /∈ ?S" by(simp add: ‘?S = f y‘)

with ‘y ∈ ?S‘ show False by contradiction

next
assume "y /∈ ?S"

hence "y ∈ f y" by simp

hence "y ∈ ?S" by(simp add: ‘?S = f y‘)

with ‘y /∈ ?S‘ show False by contradiction

qed
qed

qed

Method contradiction succeeds if both P and ¬P are among the assumptions
and the facts fed into that step, in any order.

As it happens, Cantor’s theorem can be proved automatically by best-first
search. Depth-first search would diverge, but best-first search successfully navi-
gates through the large search space:

11

(From T. Nipkow “A Tutorial Introduction to Structured Isar Proofs”)

Introduction Isabelle Applications: BGP Policy Other work, references

Application: Verifying a BGP Policy

We will apply Isabelle/HOL to formalize a correctness argument
for a simple, but nontrivial traffic engineering BGP policy.

My goal: Clarify the reasoning used by network operators.

Not a goal: To provide a practical tool.

Isabelle/HOL’s role: To increase confidence that I’ve formalized
the reasoning correcly.

Introduction Isabelle Applications: BGP Policy Other work, references

Intro to BGP

Border Gateway Protocol (BGP)

The Internet’s interdomain routing protocol; It must:
scale to the size of the Internet - link-state flooding is not
feasible!
give autonomous systems wide latitude - it cannot impose
a single optimality condition on all systems.
carry enough information to prevent forwarding loops.

BGP solves this through hierarchical routing and by allowing
each AS to choose its locally optimal routes.

Introduction Isabelle Applications: BGP Policy Other work, references

Intro to BGP

BGP: Rough Sketch

A BGP advertisement pertains to an IP prefix and carries
various attributes, including AS-level path and next hop IP
address.
Each network chooses a single “best” route to each IP
prefix that it knows of.
Among those best routes, some are advertised to
neighbors.
“best” is defined through BGP policy.

Introduction Isabelle Applications: BGP Policy Other work, references

Intro to BGP

BGP Policy Knobs

Filter input routes; reject “bogus” routes
Rank routes for each IP prefix; choose where to send traffic
Filter best routes before advertising; prevent others from
sending you traffic
Attach attributes to advertisements; communicate extra
information about the route to neighbor.

Even though these knobs are simple, their effects depend on
other network components, in particular, forwarding behavior.

Introduction Isabelle Applications: BGP Policy Other work, references

Intro to BGP

Can we bridge the gap?

What is the intended behavior of an autonomous system?
We need:

A language with which describe the intended behavior.

Can we prove that a policy achieves the intended
behavior? We need:

A model of BGP and policy semantics.
A model of forwarding behavior.

We will work from a case study, and develop the tools needed
to model and verify that example.

Introduction Isabelle Applications: BGP Policy Other work, references

Case study

Case study - Informally

The case study appears in BGP
Design and Implementation by
Zhang and Bartell.

Objectives:
Use OC3 primarily, DS3 as
a backup
Put some regular traffic on
DS3 - we might as well use
it since we have it. Which
traffic?

Multi-homed network

home

100 200

OC3 DS3

Introduction Isabelle Applications: BGP Policy Other work, references

Case study

Case study - Informally

The case study appears in BGP
Design and Implementation by
Zhang and Bartell.

Objectives:
Use OC3 primarily, DS3 as
a backup
Put some regular traffic on
DS3 - we might as well use
it since we have it. Which
traffic?

Multi-homed network

home

100 200

OC3 DS3

Introduction Isabelle Applications: BGP Policy Other work, references

Case study

Case study - Informal Specification

Zhang & Bartell’s solution:
Request “default and customer”
routes from providers.
Use OC3 for traffic to
non-customers of 100 and 200.
Use OC3 for traffic to
customers of 100
Use DS3 for traffic to customers
of 200.
We take the above as our
informal specifications. We will
formalize this later.

Multi-homed network

home

100 200

custs of 100 custs of 200

OC3 DS3

Introduction Isabelle Applications: BGP Policy Other work, references

Case study

Case study - Informal Specification

Zhang & Bartell’s solution:
Request “default and customer”
routes from providers.
Use OC3 for traffic to
non-customers of 100 and 200.
Use OC3 for traffic to
customers of 100
Use DS3 for traffic to customers
of 200.
We take the above as our
informal specifications. We will
formalize this later.

Multi-homed network

home

100 200

custs of 100 custs of 200

OC3 DS3

Introduction Isabelle Applications: BGP Policy Other work, references

Case study

Case study - Informal Specification is Inconsistent

Zhang & Bartell’s solution:
Use OC3 for traffic to
non-customers of 100 and 200.
Use OC3 for traffic to
customers of 100
Use DS3 for traffic to customers
of 200.
What about customers of both?
The above specifications are
impossible to realize!

Multi-homed network

home

100 200

custs of 100
custs of 200

?

OC3 DS3

Introduction Isabelle Applications: BGP Policy Other work, references

Case study

Case study - Informal Implementation

Zhang & Bartell’s implementation:
Rank routes learned over the OC3 at
preference level 120.
Rank routes learned over the DS3 at
preference level 100.
This results in:

best route to default prefix is over OC3,
best route to customers of 100 is over
OC3,
best route to customers of 200 (that are
not custs of 100) is over DS3.

home

100 200

custs of 100

custs of 200

OC3 DS3

Introduction Isabelle Applications: BGP Policy Other work, references

Case study

Case study - Informal Implementation

Zhang & Bartell’s implementation:
Rank routes learned over the OC3 at
preference level 120.
Rank routes learned over the DS3 at
preference level 100.
This results in:

best route to default prefix is over OC3,
best route to customers of 100 is over
OC3,
best route to customers of 200 (that are
not custs of 100) is over DS3.

But does this really accomplish the forwarding
behavior we are trying to achieve? Are we
sure? For this, a model will help...

home

100 200

custs of 100

custs of 200

OC3 DS3

Introduction Isabelle Applications: BGP Policy Other work, references

System Model

Model

The model basically defines a map:

(Topology,RoutingPolicy,Announcements)⇒ ForwardingBehavior

Introduction Isabelle Applications: BGP Policy Other work, references

System Model

Model: Addresses, Prefixes, Routes

types address = bool list
prefix = bool list
asnumber = nat
asseq = asnumber list
route = prefix * asseq * link

definition Address :: address => bool
where Address a == (length a = 32)

fun addressInPrefix :: (address * prefix) => bool
where addressInPrefix (x,p) = prefixOf p x

definition AllPrefixes :: prefix set
where AllPrefixes == { p | p. length p <= 32}

Introduction Isabelle Applications: BGP Policy Other work, references

System Model

Model: Topology & Policy

datatype link = OC3 | DS3

primrec linkID :: link => nat
where
linkID OC3 = 1 |
linkID DS3 = 2

primrec linkTo :: link => asnumber
where
linkTo OC3 = 100 |
linkTo DS3 = 200

fun rank :: route => nat
where
rank(s,p,OC3) = 120 |
rank(s,p,DS3) = 100

Introduction Isabelle Applications: BGP Policy Other work, references

System Model

Model: Announcements

consts announce :: (asnumber * route) set

definition knows :: route set where
knows == { r | asn r. announce (asn,r) }

definition mostSpecific :: address => prefix => bool
where
mostSpecific a p ==

addressInPrefix(a,p) &
(EX r. routePrefix r = p & knows r) &
(ALL p’ . (EX r’. routePrefix r’= p’ &

addressInPrefix(a,p’) &
knows r’)

--> p <$= p’)

Introduction Isabelle Applications: BGP Policy Other work, references

System Model

Model: axioms

axioms
ax_finite : finite announce
ax_prefix_ord : ((P <= AllPrefixes) &

(P ~= {}) &
(ALL p:P . addressInPrefix (a,p))

)
==> (EX p:P . ALL p’:P . p <$= p’)

ax_link : announce(asn,(s,p,l))
==> (linkTo l = asn)

ax_ann_pre : announcedPrefixes <= AllPrefixes

Introduction Isabelle Applications: BGP Policy Other work, references

System Model

Model: Comparing routes

fun better :: route => route => bool
where
better (s,p,l) (s’,p’,l’) =
(s=s’) &
((rank (s,p,l) > rank(s’,p’,l’)) |
(rank (s,p,l) = rank(s’,p’,l’)

& length p < length p’) |
(rank (s,p,l) = rank (s’,p’,l’)

& length p = length p’
& comparePaths p p’) |

(rank (s,p,l) = rank (s’,p’,l’)
& length p = length p’
& p = p’
& linkID l < linkID l’)

)

Introduction Isabelle Applications: BGP Policy Other work, references

System Model

Model: best routes & overall behavior

definition best :: route => bool
where
best r ==
knows r &
(let (s,p,l) = r
in ALL p’ l’. ((p ~= p’| l~=l’) & knows(s,p’,l’))

--> better r (s,p’,l’))

definition egress where
egress a l == EX s p. mostSpecific a s & best (s,p,l)

Introduction Isabelle Applications: BGP Policy Other work, references

System Model

Model: Concrete Examples

Announcements

Neighbor Prefix Path Link
100 0.0.0.0/0 [100] oc3
100 1.1.0.0/16 [100,500] oc3
200 1.1.0.0/16 [200,400,500] ds3
200 4.2.2.0/24 [200,800,900] ds3

Knows, Best

Prefix Path Link is Best?
0.0.0.0/0 [100] oc3 yes

1.1.0.0/16 [100,500] oc3 yes
1.1.0.0/16 [200,400,500] ds3 no
4.2.2.0/24 [200,800,900] ds3 yes

MatchingPrefixes, MostSpecific, Egress

Address a MatchingPrefixes(a) MostSpecific(a) Egress(a)
4.2.2.103 {4.2.2.0/24, 0.0.0.0/0} 4.2.2.0/24 ds3
1.1.1.25 {1.1.0.0/16, 0.0.0.0/0} 1.1.0.0/16 oc3

170.2.3.100 {0.0.0.0/0} 0.0.0.0/0 oc3

Introduction Isabelle Applications: BGP Policy Other work, references

System Model

Model: customers, neighbor behavior

consts cust :: (address * asnumber) set

definition defaultAdvertised where
defaultAdvertised asn ==
EX p l. announce(asn, (defaultPrefix,p,l))

definition custAdvertised where
custAdvertised asn ==
ALL a.
cust(a,asn) = (EX s p l. announce(asn,(s,p,l)) &

addressInPrefix(a,s) &
s <$ defaultPrefix)

definition defaultAndCust where
defaultAndCust asn == custAdvertised asn &

defaultAdvertised asn

Introduction Isabelle Applications: BGP Policy Other work, references

System Model

Formal Specification

Specification

1 [Cust(a, 100) ∧ Cust(a, 200)] → Egress(a, oc3)
2 [¬Cust(a, 100) ∧ Cust(a, 200)] → Egress(a, ds3)
3 ¬Cust(a, 200) → Egress(a, oc3)

Cust(a, 100) Cust(a, 200) Egress(a)
yes yes oc3
yes no oc3
no yes ds3
no no oc3

Multi-homed network

home

100 200

custs of 100

custs of 200

OC3 DS3

Introduction Isabelle Applications: BGP Policy Other work, references

System Model

Verification

We can prove some parts of the specification, for example:

Lemma
Cust(a,asn) =⇒ ∃l . (Egress(a, l) ∧ Cust(a, linkTo(l)))

Theorem
(Cust(a,200) ∧ ¬Cust(a,100)) =⇒ Egress(a,ds3)

Proof.
1 Assume a is an address such that Cust(a, 200) and not Cust(a, 100).
2 There is a link l such that Egress(a, l) and Cust(a, linkTo(l)) (by above).
3 Either l = oc3 or l = ds3.
4 If l = oc3, then linkTo(l) = 100, hence Cust(a, 100), ⊥.
5 Thus, l = ds3.

Introduction Isabelle Applications: BGP Policy Other work, references

System Model

Verification

We can prove some parts of the specification, for example:

Lemma
Cust(a,asn) =⇒ ∃l . (Egress(a, l) ∧ Cust(a, linkTo(l)))

Theorem
(Cust(a,200) ∧ ¬Cust(a,100)) =⇒ Egress(a,ds3)

Proof.
1 Assume a is an address such that Cust(a, 200) and not Cust(a, 100).
2 There is a link l such that Egress(a, l) and Cust(a, linkTo(l)) (by above).
3 Either l = oc3 or l = ds3.
4 If l = oc3, then linkTo(l) = 100, hence Cust(a, 100), ⊥.
5 Thus, l = ds3.

Introduction Isabelle Applications: BGP Policy Other work, references

System Model

Verification

We can prove some parts of the specification, for example:

Lemma
Cust(a,asn) =⇒ ∃l . (Egress(a, l) ∧ Cust(a, linkTo(l)))

Theorem
(Cust(a,200) ∧ ¬Cust(a,100)) =⇒ Egress(a,ds3)

Proof.
1 Assume a is an address such that Cust(a, 200) and not Cust(a, 100).
2 There is a link l such that Egress(a, l) and Cust(a, linkTo(l)) (by above).
3 Either l = oc3 or l = ds3.
4 If l = oc3, then linkTo(l) = 100, hence Cust(a, 100), ⊥.
5 Thus, l = ds3.

Introduction Isabelle Applications: BGP Policy Other work, references

System Model

Verification

We can prove some parts of the specification, for example:

Lemma
Cust(a,asn) =⇒ ∃l . (Egress(a, l) ∧ Cust(a, linkTo(l)))

Theorem
(Cust(a,200) ∧ ¬Cust(a,100)) =⇒ Egress(a,ds3)

Proof.
1 Assume a is an address such that Cust(a, 200) and not Cust(a, 100).
2 There is a link l such that Egress(a, l) and Cust(a, linkTo(l)) (by above).
3 Either l = oc3 or l = ds3.
4 If l = oc3, then linkTo(l) = 100, hence Cust(a, 100), ⊥.
5 Thus, l = ds3.

Introduction Isabelle Applications: BGP Policy Other work, references

System Model

Verification

We can prove some parts of the specification, for example:

Lemma
Cust(a,asn) =⇒ ∃l . (Egress(a, l) ∧ Cust(a, linkTo(l)))

Theorem
(Cust(a,200) ∧ ¬Cust(a,100)) =⇒ Egress(a,ds3)

Proof.
1 Assume a is an address such that Cust(a, 200) and not Cust(a, 100).
2 There is a link l such that Egress(a, l) and Cust(a, linkTo(l)) (by above).
3 Either l = oc3 or l = ds3.
4 If l = oc3, then linkTo(l) = 100, hence Cust(a, 100), ⊥.
5 Thus, l = ds3.

Introduction Isabelle Applications: BGP Policy Other work, references

System Model

Verification

We can prove some parts of the specification, for example:

Lemma
Cust(a,asn) =⇒ ∃l . (Egress(a, l) ∧ Cust(a, linkTo(l)))

Theorem
(Cust(a,200) ∧ ¬Cust(a,100)) =⇒ Egress(a,ds3)

Proof.
1 Assume a is an address such that Cust(a, 200) and not Cust(a, 100).
2 There is a link l such that Egress(a, l) and Cust(a, linkTo(l)) (by above).
3 Either l = oc3 or l = ds3.
4 If l = oc3, then linkTo(l) = 100, hence Cust(a, 100), ⊥.

5 Thus, l = ds3.

Introduction Isabelle Applications: BGP Policy Other work, references

System Model

Verification... Fails!

On the other hand, some parts fail! In particular, this fails:

[Cust(a,100) ∧ Cust(a,200)]→ Egress(a,oc3)
Here is a counterexample:

Announcements

Neighbor Prefix Path Link is best?
100 0.0.0.0/0 [100] oc3 yes
100 1.0.0.0/8 [100,300] oc3 yes
200 0.0.0.0/0 [200] ds3 no
200 1.0.0.0/16 [200,300] ds3 yes

For address a = 1.0.0.0:

MatchingPrefixes(a) = {1.0.0.0/16, 1.0.0.0/8, 0.0.0.0/0}

Cust(a, 100), Cust(a, 200)

MostSpecific(a) = 1.0.0.0/16

Egress(a) = ds3

Introduction Isabelle Applications: BGP Policy Other work, references

System Model

Verification... Fails!

On the other hand, some parts fail! In particular, this fails:

[Cust(a,100) ∧ Cust(a,200)]→ Egress(a,oc3)
Here is a counterexample:

Announcements

Neighbor Prefix Path Link is best?
100 0.0.0.0/0 [100] oc3 yes
100 1.0.0.0/8 [100,300] oc3 yes
200 0.0.0.0/0 [200] ds3 no
200 1.0.0.0/16 [200,300] ds3 yes

For address a = 1.0.0.0:

MatchingPrefixes(a) = {1.0.0.0/16, 1.0.0.0/8, 0.0.0.0/0}

Cust(a, 100), Cust(a, 200)

MostSpecific(a) = 1.0.0.0/16

Egress(a) = ds3

Introduction Isabelle Applications: BGP Policy Other work, references

System Model

Verification

Two solutions:
Change the specification so that it makes no requirement
on the case Cust(a,100) ∧ Cust(a,200);
Add an assumption; for example the assumption that both
providers will announce their common customers’ prefixes
identically.

Either option allows us to verify that the policy meets the
specification.

Introduction Isabelle Applications: BGP Policy Other work, references

System Model

Conclusions

We see that:
there is a gap between operator intent and BGP policy, and
that gap is nontrivial, even when using a toy model of BGP.

Questions:
Are there better ways to characterize operator intentions?
In this example, maybe we should have expressed the real
intent as “traffic balance”.

Introduction Isabelle Applications: BGP Policy Other work, references

Cryptographic protocols

A cryptographic protocol lets agents communicate securely in
insecure networks.

In Chapter 10 of Isabelle/HOL tutorial, L. Paulson analyzes
several cryptographic protocols using Isabelle/HOL and verifies
numerous secrecy and authenticity properties.

This is a good example, because the correctness of the
protocol is important, and the protocol will likely be used for a
long time, making the verification effort worthwhile.

It is also a nice illustration of verification techniques, in
particular inductively defined sets and induction.

Introduction Isabelle Applications: BGP Policy Other work, references

References & further reading

1 Isabelle
1 http://isabelle.in.tum.de
2 Tutorial on Isabelle/HOL
3 Tutorial on Isar
4 C. Ballarin and G. Klein,

http://isabelle.in.tum.de/coursematerial/IJCAR04/index.html
2 Background on HOL, theorem provers

1 W. Farmer, “Seven Virtues of Simple Type Theory”
2 F. Wiedijk, “Formal Proof - Getting Started”

3 Verification
1 L. Paulson, “The Inductive Approach to Verifying

Cryptographic Protocols”
2 A. Biltcliffe et al, “Rigorous Protocol Design in Practice: An

Optical Packet-Switch MAC in HOL”.

	Introduction
	Why use theorem provers?
	Theorem provers vs. Automatic Techniques
	Higher Order Logic (HOL)

	Isabelle
	Isabelle Tutorial

	Applications: BGP Policy
	Intro to BGP
	Case study
	System Model

	Other work, references

