
Lecture 3 - Computational Security

Boaz Barak

February 8, 2010

Exponential is big Machine with concrete example.

Ramblings Defense of definitions... why probability is essential for secrecy.

Quick Review Perfect security, impossibility result, statistical security

Definition of statistical security: (E,D) is ε-secure if for every A : {0, 1}∗ → {0, 1}, x0, x1,∣∣Pr[A(EUn(x0)) = 1]− Pr[A(EUn(x1) = 1]
∣∣ < ε

Computational Security Unfortunately, we saw that statistical security does not allow us to
really break the impossibility result.

We now turn to a closer examination of that impossibility result. In particular, in real life
people are using encryption schemes with keys shorter than the message size to encrypt all
sort of sensitive information including credit card numbers. Could we use the proof of the
impossibility result to break these schemes and gain notoriety and fortune?

Indeed, the proof of the impossibility result does in fact give a algorithm to break any en-
cryption scheme. It’s even quite simple (10 lines of C code).

The only problem is that if the key is of size n, then this 10 line C program will run in time
roughly 2n. This is going to take quite a long time even for n that is not too large.

Consider a key that is 1Kbit long (this is not very large note that many cell phones have
at least 128, 000 ∗ 8Kbits memory, definition of broadband access is at least 256Kbits/sec).
Even if we take Moore’s law to its limit, and assume that we have placed a super-computer
operating at the speed of light on every atom in the observable universe , we would still not
be able to run 21000 operations before the sun collapses. It’s a safe bet that any credit cards
we manage to steal will be expired by then...

This raises the idea of designing encryptions that are unbreakable within any reasonable time.

Computationally Secure Encryption The main problem we face is that, while the particular
C program arising from that proof runs in exponential time, we don’t have any guarantee
that there is not another program that is actually efficient. In fact, we already saw this is
the case for the substitution cipher, where the number of possibilities for the key is huge but
still we can break the scheme efficiently.

Another problem is that we want a precise mathematical definition. That is, the previous
perfect secrecy definition was a precise statement about the functions (E,D) that can be
formulated and proven to hold using the tools of mathematics. We don’t want a vague
definition such as “breaking E is very hard” since we can’t work with such a definition.

1

This means that we need to give a precise mathematical formulation to statements such as
“the problem P can not be solved in reasonable time”. However, this arises the question of
how do we model the adversary’s resources. The adversary may use a Windows, Mac, or
Unix system, she may use a network of connected computers, she may use a super computer,
or a special purpose computer she constructed just for this task, perhaps not made out of
silicon but maybe out of analog or biological components, she can also use a mixture of
computer and human intelligence, using say particularly gifted mathematicians to help break
our encryption.

Can we give a mathematically precise definition that implies that a computational problem
cannot be solved in say T years no matter what mixture of these and other resources are
used?

It turns out the answer is “Yes”. To do so, we need to give a mathematical model that
captures the notion of computation in all its forms. The model we will use will be Boolean
circuits or equivalently Turing machines.1 This model should be familiar to people who have
taken any course on computability, complexity, saw the results on NP-completeness, etc..
However, for cryptography it is convenient to make the following two modifications:

• Allow the algorithm to be probabilistic: that is, toss coins in the course of its computa-
tion.
• We will sometimes allow the algorithm to get a small advice string as an additional

input. (This is not crucial but simplifies some of the proofs; we note that Katz-Lindell
do not follow this approach.)

Computing a function Suppose that f is a function mapping n bit strings into, say, bits. We
want to make precise a statement such as “f is computable in T basic computational steps”.
It turns out this can be done, and if f is computable in T steps according to this definition,
then it is also computable in at most 1000T 2 steps in your favorite programming language
and vice versa. So, the exact choice does not really matter.

Some equivalent ways to define this are:

• f can be computed by a size-T Boolean circuit - i.e., by combining at most T , AND,
OR and NOT operations.
• f can be computable in T steps by a probabilistic Turing Machine whose description is

a string of length at most T .2

• f can be computable by a C program of at most T characters that stops within T steps
for every input.

The computational model - a user’s guide In this course, the only things you’ll need to know
about the model when trying to show that some computation takes roughly T time are:

1We note that the scientific community is still studying whether or not this model of the Turing machine does
bound all that can be done efficiently in the physical universe. Although it seems that it captures all mechanical and
biological devices that currently exist, a fascinating challenge is posed to this model by quantum computers. These
are hypothetical computing devices that may be built in the future and whose computing power relative to Boolean
circuits is still very much an open question (see Scott Aaronson’s thesis for more on this). However, for most all of
the material of this course the choice of model (e.g., Turing machines, Boolean circuits, or Quantum circuits) does
not matter much, and so this debate does not effect us greatly.

2An equivalent and more common definition is that the length of the Turing machine’s description is at most some
absolute constant, say 106, but it is given an advice string a ∈ {0, 1}T as an additional input.

2

• You can use T basic operations such as arithmetic operations, conditionals, memory
reads and writes, etc...

• You can toss coins or choose random numbers in the course of the computation.

• You can assume that constants are “hardwired” into the algorithm, as long as these
constants can be described by a string of length at most T .

Asymptotic notation We use asymptotic (Big Oh) notation in cryptography for reasons similar
to the reasons this is used for algorithm, though in cryptography we look at things “back-
ward”.

In analyzing algorithms you’d ask a question such as “how large of an input can I handle with
this algorithm?”. In cryptography you ask the dual question: “how big do I need to make
the key so that it will be infeasible to break my system using T steps”.

If you have a scheme that cannot be broken with fewer than 2n steps, then you will be able
to use a fairly small key no matter how big you want T (e.g., even if you want to make sure
the system cannot be broken by an array of supercomputers the size of the universe running
for millions of years). More or less the same conclusion will hold even if 2n is replaced by
2n/10 or 2n1/3

etc..

On the other hand, if your system can be broken in n2 steps then, although it may still be
usable in some setting, it will be a very tight tradeoff between how much effort the “honest
parties” are willing to spend in their daily usage of the system, and what bound can we
assume on the resources available to an attacker. Again, more or less the same conclusion
will hold even if n2 is replaced by 1000n2 or n3 etc..

For these reasons, and also for pedagogical reasons, it makes sense to have notation that hides
away the details of precise constants, and so we use O notation. Much of the time we won’t
care about the difference between n2, 100n2 and n3 and we’ll call all of these polynomial time,
and denote this by poly(n) or nO(1). Similarly, we won’t care about the difference between
2n, 2n/10 or 2n1/3

and we’ll call these super-polynomial time, and denote this by nω(1).

There is one price you have to pay when you switch to asymptotic notation: you can never
talk about finite functions, cryptosystems, keys, etc.. but you always talk about a sequence
of such functions, one for every value of n. We will often treat these sequences implicitly, but
you should always think of the key size n as some parameter that is “large enough” and one
can always make larger.

Oh-notation: Formally, we use the following set of notations for functions S, T : N → N (they
can be used for every function, but we will typically use them for functions denoting running
time as function of the input or inverse of probability of success):

• T (n) = O(S(n)) if there exists c such that T (n) ≤ cS(n) for every sufficiently large n.
Example: T (n) = 100n2, S(n) = n2.

• T (n) = Ω(S(n)) if S(n) = O(T (n)).

• T (n) = o(S(n)) if for every c and sufficiently large n, T (n) > cS(n). Example: T (n) =
n2, S(n) = 1000n.

• T (n) = ω(S(n)) if S(n) = o(T (n)).

• T (n) = poly(S(n)) if T (n) = S(n)O(1). That is, there exists d such that T (n) ≤ S(n)d

for every sufficiently large n. Example: T (n) = 100n5 log n, S(n) = n2.

3

We say that a function T is super-polynomial if T (n) = nω(1). Examples: T (n) = nlog n,
T (n) = 2

√
n.

For example, if f is a function mapping {0, 1}∗ to {0, 1}, then:

• We say that f has a linear time (i.e., O(n)) algorithm if there is a constant c such that
f ’s restriction to {0, 1}n can be computed in at most cn steps for every n ∈ N.

• We say that f has a polynomial time (i.e., nO(1)) algorithm if there are constants c, d
such that f ’s restriction to {0, 1}n can be computed in at most cnd steps for every n ∈ N.

• We say that f has super-polynomial complexity (i.e., nω(1)) if for every constants c, d and
sufficiently large n,3 f ’s restriction to {0, 1}n can not be computed in cnd steps.

Probabilities Another parameter that comes up in cryptography is the probability that an ad-
versary succeeds in an attack. Again for simplicity we will mostly care if this probability is
extremely tiny (e.g., 2−n, 2−n/10, 2−n1/3

) or relatively large (e.g., 1/10, 1/n, 1/n2). Often
we’ll have a bound on this probability as a function of the key size, and use the following
notation:

We say that a function ε : N → [0, 1] is polynomially bounded if ε(n) ≥ 1
nO(1) . Examples:

ε(n) = 1/10, ε(n) = 1/n2 , ε(n) = 1/n5 log n.

A function ε : N → [0, 1] is negligible if ε(n) < 1
nω(1) . Examples: ε(n) = 2−n, µ(n) = 2−

√
n,

ε(n) = n− log n,

Convention: In this course we use the convention that efficient computation is equal to polynomial-
time. This convention is used for pedagogical purposes only - for simplicity of description and
notations. In practice we deal with finite inputs, and so one would need to work out the
precise quantitative meaning of a proof of a statement such as “breaking this encryption has
super-polynomial complexity”. However, equating polynomial-time with efficient computa-
tion is an extremely useful way to describe the high level ideas behind many proofs of security,
without getting bogged down with the low-level details.

Polynomial-time algorithm A polynomial-time algorithm is an algorithm A that maps any in-
put x ∈ {0, 1}∗ into an output y within poly(|x|) number of steps (steps can include probability
and advice).

Computational security We can now define computational security:

C/S Definition Let (E,D) be an encryption scheme that uses n-bit keys to encrypt `(n)-
length messages. (E,D) is computationally secure if for every polynomial-time algorithm
A : {0, 1}∗ → {0, 1}, polynomially bounded ε : {0, 1}∗ → [0, 1], n, and x0, x1 ∈ {0, 1}`(n),∣∣Pr[A(EUn(x0)) = 1]− Pr[A(EUn(x1) = 1]

∣∣ < ε(n) (*)

Conjecture 1: There exists an efficiently computable and computationally secure encryption
scheme satisfying `(n) = n100. (In fact, most people believe this is true even for `(n) = 20.9n.)

Game view We can also define computational security using a game between the Evesdropper
and encrypter, as we did in the case of statistical security.

3That is, there exists N0 such that this condition holds for every n > N0.

4

Advanced note There is a subtle difference between the game definition and the C/S definition
above: in the C/S definition we assumed security for every pair of messages x0, x1, and in
the game-based definition the adversary Adv has to find the two messages x0, x1 herself. A-
priori this seems to imply that the encryption scheme is not required to guarantee secrecy
for pairs of messages that are very hard to find (e.g., strings that encode the answers to
age-old riddles). However, because we allow advice (i.e., hardwired constants), if there exists
a single pair x0, x1 on which one can distinguish EUn(x0) from EUn(x1), then the adversary
can have this pair “hardwired” into its description, and because of this the two definitions
are equivalent.

In contrast, Katz-Lindell do not allow advice in their definition of efficient computation, and
for this reason their analog of the C/S definition only talks about pairs of messages that are
efficiently samplable.

In our context, the difference between allowing advice and not allowing it is very small, but
as in this case, allowing advice sometimes slightly simplifies definitions and proofs, which is
why we do it.

Plan for next few lectures We will show that Conjecture 1 is true assuming a certain Axiom
that we will name as “The PRG Axiom”. Then, we will work in two directions:

1. Give evidence for the validity of the PRG Axiom, showing how we can base it on weaker
and more reasonable-sounding conjectures, although at the moment it is not known how
to prove it from scratch.

2. Show how assuming the PRG Axiom is true, we can get better and better cryptographic
constructions: encryptions that can withstand stronger attacks such as chosen plaintext
and chosen ciphertext attacks, and other constructs such as message authentication
codes, digital signatures, and more.

Proofs by reduction The main tool we will use is the notion of proof by reduction. For example,
it is possible to prove the following theorem:

Theorem 1. Suppose that for every polynomial-time algorithm B and polynomially bounded
ε : N → [0, 1], Pr[B(p · q) = 〈p, q〉] < ε(n), where p and q are chosen as random n-bit long
primes.

Then Conjecture 1 is true: there exists a computationally secure encryption scheme E,D with
`(n) = n100.

(A variant of this theorem will follow from the results we’ll see in this course.)

How do you prove something like that? The way the proof goes is by showing the following:

Theorem 2. There exists an encryption scheme E,D and a polynomial-time algorithm B
with the following property:

Assume that the algorithm B is given as input an number x and has access to a black-box
that we denote by A. Then, if x = pq for random n-bit primes p, q and A is an algorithm
violating (*) with probability ε, then B will output the pair p, q with probability poly(ε).

Why does Theorem 2 imply Theorem 1? Because it means that if there was a T -time algorithm
A that breaks the scheme (E,D) (in the sense of (*)) with probability ε, then there would be

5

a poly(n) ·T (poly(n))-time algorithm B that factors the 2n-bit number x with probability at
least poly(ε). Since we assume the latter is impossible, it follows that so is the former.

Of course, the hard thing is to prove Theorem 2. Still sometimes half of the job of proving a
theorem such as Theorem 1 is understanding what kind of reduction we need to prove, or in
other words, understanding the statement of the corresponding Theorem 2.

All of the security proofs in this course will be proofs by reductions. (Specifically black-box
reductions.)

Advanced note: The fact that all these security proofs are by reduction means that they
often supply us more than just the theorem statement. For example, Theorem 2 implies that
if even, say 2n1/4

-time algorithms cannot factor n-bit integers with, say, 2−n1/4
probability

then the resulting encryption scheme would have exponential security, and it is even possible
to work out the precise security from the parameters of the reduction. Such quantitative or
concrete analysis is needed to better understand the implications of the security proofs to the
practical security of implemented schemes.

6

