
Lecture 22 — Homomorphic Encryption 4: Construction of fully

homomorphic encryption.

Boaz Barak

April 21, 2010

Review of mildly homomorphic scheme

(Recall that bxe denotes the integer closest to x, breaking ties, say, downwards.)

Assumption We’ll make the following “learning divisor with noise” assumption: LDN Assump-
tion: let P a random n bit prime, R a random n4 bit prime, and let N = PR. A distin-
guisher that is given N and X1, . . . , Xpoly(n) cannot distinguish between case (I) Xi’s are
chosen independently at random from [N], and (II) Xi = PQi + 2Ei (mod N) where Qi is
chosen independently at random from [R] and Ei is chosen independently at random from
[−2n

0.1
,+2n

0.1
].

Note: Following Sushant’s suggestion, I changed the LDN assumption so that N is an exact
multiple of P . This makes reducing ciphertext size much easier, since now reducing modulo
N doesn’t introduce any additional noise (can you see why?). I also changed the parameters
a bit (set N to have n5 bits rather than 100n), since there are in fact some attacks if N is
not big enough. This makes no difference in anything we discussed last time. Adding the
(mod N) in case (II) does not make any difference as with 1 − negl(n) probability Xi will
be a number between 1 and N— it’s just a bit cleaner this way.

Revision of last lecture’s scheme: Below is a slight variant of the private key mildly homomor-
phic scheme we showed on Monday. As I mentioned in class and you’ll show in an exercise, a
fully homomorphic private key encryption implies a fully homomorphic public key encryption,
so once we get a fully homomorphic encryption we’ll be fine.

Key We choose P to be a random n bit prime, and R to be a random n4 bit prime, N = PQ.
We keep P secret, and can publish N as a public parameter. (One can also think of N
as being concatenated to every encryption.)

Encryption EncEP (b) denotes encryption of b with key P and noise parameter E. It’s defined
as follows: choose Q ←R [N/P] and E ←R [−E,+E], and output X = QP + 2E + b
(mod N). We set the parameter E to be 2

√
n.

Decryption To decrypt X, output X − bX/P eP (mod 2).1

1This is a close variant to the decryption algorithm of outputting (X + 2 bP/4c (mod P)) (mod 2) I showed last
time since X−bX/P eP is the same as X−bX/P + 0.5cP , which in our case (where X/P is very close to an integer)
equals X + 2 bP/4c (mod P) up to an even number.

1

Security and correctness of scheme The choice 2
√
n for the parameter E makes the scheme

both correct and secure. More generally, as long as E � P (say E < 20.9n) then decryption
will succeed, since X −bX/P eP will equal 2E+ b. As long as E > 2n

0.1
then under the LDN

assumption the scheme will be secure.

Mild homomorphism We have the operations Add and Mult defined simply as Add(X,X ′) =
X + X ′ (mod N) and Mult(X,X ′) = X ·X ′ (mod N). Let EE(b) denote the set of possible
encryptions of b with parameter E. That is EE(b) = {X : X = QP + 2E + b,Q ∈ [N/P], E ∈
[−E,+E]}. Then if X ∈ EE(b) and X ′ ∈ EE′

(b′) then the calculations we did show that
(i) Add(X,X ′) ∈ E2(E+E′)(b⊕ b′) and
(ii) Mult(X,X ′) ∈ E5EE′

(bb′).

As a consequence, if we start with m ciphertexts with noise parameter 2
√
n then we can add

and multiply them and as long as we don’t take a product of more than say n1/10 of them
then we’ll still get ciphertexts of noise � 2n (and hence we can decrypt them). In particular
we can apply to these ciphertexts any m variable polynomial over GF (2) that has degree at
most n1/10 and at most polynomially many monomials.

Note that if E′ ≥ E then EE(b) ⊆ EE′
(b).

Making it fully homomorphic

Clean and ReRand To make the scheme above fully homomorphic we’ll add two operations to it:

• Clean(X) will take as input a ciphertext in E2n
0.9

(b) and output a ciphertext in E2n
0.3

(b).
That is, it reduces the noise of the ciphertext.

• ReRand(X) will take as input a ciphertext in E2n
0.4

(b) and output a ciphertext that dis-

tributed statistically close to the uniform distribution over E2
√
n
(b), that is, ReRand(X) ≈

Enc(b).

Fully homomorphic encryption Together Clean and ReRand imply a fully homomorphic en-
cryption scheme: to evaluate NAND on two encryption, express NAND as additions and
multiplications, by writing

(b ∧ b′) = 1⊕ bb′

and so given two ciphertexts X,X ′ in the range of the encryption algorithm encrypting b

and b′ respectively (i.e., X ∈ E2
√
n
(b) and X ′ ∈ E2

√
n
(b′)) we can compute a ciphertext

Y ∈ E27
√
n
(b ∧ b′) by writing Y = 1 + XX ′. (Adding 1 to a ciphertext flips its encrypted

value, though if you prefer to be more “modular”, you can also include an encryption of 1 in
the public parameters.)

We then output ReRand(Clean(Y)). Since Clean(Y) will be in E2n
0.3

(b ∧ b′) the output of
ReRand(Clean(Y)) will be statistically close to a random encryption of b ∧ b′.
Note: As you can see, we have considerable “slackness” in the parameters of ReRand and
Clean, I chose these values to demonstrate that the parameter choice here needs to be done
somewhat carefully, but it’s not extremely fragile.

Our goal is now to get both Clean and ReRand. Clean is really the important one among
those— the rerandomization property can often be achieved for many encryption schemes.

2

Getting ReRand We’ll briefly mention how one can get ReRand, leaving verifying the details to the
homework exercise. Our input is a ciphertext of the form X = QP +2E+b where |E| ≤ 2n

0.4
.

We want to transform it into X ′ = Q′P + 2E′+ b where Q′ is uniform in [R] = [N/P] and E′

is uniform in [−2
√
n,+2

√
n].

• Rerandomizing noise: if we just wanted to rerandomize the noise we could just choose
E′′ uniformly in [−2

√
n,+2

√
n], and add 2E′′ to X. If we look at E′ = E +E′′ then this

is distributed uniformly in the interval [−2
√
n,+2

√
n] + E which is within 2n

0.4
/2
√
n =

negl(n) statistical distance to the uniform distribution over [−2
√
n,+2

√
n].

• Rerandomizing multiple: rerandomizing Q is a bit more tricky. The idea is the following:
suppose we have at our disposal many, say X1, . . . , Xm for m = n6, random encryptions
of 0 with small noise (less than 2n

0.4
). Then we will choose at random a subset S ⊆ [m]

and will look at the ciphertext X ′′ = X +
∑

i∈S Xi. This is still an encryption of 0 with

at most m2n
0.4

noise, and the corresponding multiple is just

Q+
∑
i∈S

Qi (mod R)

where Xi = PQi + 2Ei. We then use the following lemma (variant of what’s known as
“leftover hash lemma”):

Lemma 1. Let R be a k bit prime and suppose that Q1, . . . , Qm are chosen at random
in ZR where m > 10k. Then with probability at least 1 − 2−k/10 over the choice of
Q1, ..., Qm, if we fix them and consider the random variable Q =

∑
i∈S Qi (mod R),

where S is a random subset of [m], then Q is within 2−k/10 statistical distance to the
uniform distribution over ZR.

• Putting it all together: We combine these to get ReRand as follows: as part of the public
parameters (or concatenated to any encryption) we add ciphertexts X1, . . . , Xm where
Xi = QiP + 2Ei with Qi ←R [R] and Ei ←R [−2n

0.4
,+2n

0.4
]. Then to rerandomize X

we choose a random subset S of [m], and E′′ at random from [−2
√
n,+2

√
n] and output

X ′ = X +
∑
i∈S

Xi + 2E′

Getting Clean using “wishful thinking” We now tackle the bigger problem - how to get the
cleanup procedure Clean. This is very challenging, since up until this point it seems that any
operation we do on ciphertexts, adding/multiplying/rerandomizing etc..., only increases the
noise. In fact, it seems somewhat counterintuitive that you could decrease the noise without
knowing the secret key, since if you could decrease it too much then you would be able to
find out the plaintext!

Nevertheless, we’ll show it may be possible to clean up the ciphertext, at least if we happened
to be very lucky and the encryption scheme satisfies a certain property.

Let us consider the decryption algorithm Dec. The algorithm takes as input the secret key
P and a ciphertext X and outputs the corresponding bit b. Since P and X are in the end
represented by bits, Dec is just a function mapping {0, 1}m to {0, 1} (where m = n+n5 is the
length of this description; this is not the same number m we used in the ReRand operation).

This is an efficient function, and so it can be computed by a polynomial size Boolean circuit,
and we can assume that the gates of this circuit are only · and ⊕ (plus the constants 0, 1)

3

since they are universal. Now lets say the degree of the circuit is largest number of its inputs
that are ever multiplied together.2 (For example, if the circuit has multiplicative depth ` then
the degree is at most 2`.)

Let’s suppose that we are lucky and the degree of the circuit Dec is at most n0.01. We claim
that in this case we can run the Clean operation as follows:

Recall that we’re given an input X = QP + 2E + b where |E| ≤ 2n
0.9

and our goal is to come
up with X ′ = Q′P + 2E′ + b such that |E′| ≤ 2n

0.3
. We are going to do the following:

• We change the scheme to include Y1, . . . , Yn in the public parameters where Yi =

Enc2
n0.1

P (Pi) with Pi being the ith bit of P . That is, we include an encryption of P
in the public parameters, using noise value 2n

0.1
which is smaller than the standard

parameter, but still big enough to ensure security.

• In the cleanup operation we define Yn+1, . . . , Ym, (where m = n + n5) according to the
bits of the ciphertext X. That is, Yn+1 is 1 if the first bit of X is 1 and 0 otherwise,
etc.. Note that we can think of the number 1 also as an encryption of 1 (after all
1 = 0 · P + 2 · 0 + 1) and similarly we can think of the number 0 also as an encryption
of 0.

Therefore, we now have ciphertexts Y1, . . . , Ym that are encryptions of the P ◦X where ◦
denotes concatenation. Moreover, these ciphertexts Yi have very low noise! That is, each
one of them has noise at most 2n

0.1
. (Where our goal is at the end to get a ciphertext

of noise 2n
0.3

.)

Now we know that Dec(P ◦X) = b, and so if we run the circuit Dec on the encryptions
Y1, . . . , Ym we should get a ciphertext X ′ encrypting b which is exactly what we wanted!
(This argument is so beautiful it deserves all the exclamation marks it gets...)

The only thing left to verify is that the noise of X ′ is not that large. The idea is that
because the circuit is simple, and we started from ciphertexts with small noise then we
will get a ciphertext with not too large noise. Formally, we have the following lemma
(naturally left as an exercise...)

Lemma 2. Suppose that C is a Boolean circuit with ·,⊕ gates mapping {0, 1}m → {0, 1}
with degree at most d, and let Y1, . . . , Ym be ciphertexts such that Yi ∈ EE(bi). Let Y be
the result of applying C to Y1, . . . , Ym (by replacing addition and multiplication with the
corresponding Add and Mult operations— add and multiply modulo N). Then

Y ∈ EE(3d)2(
C(b1 · · · bm)

)
Noting that in our case E = 2n

0.1
and d = n0.01, and so E(3d)2 =

(
2n

0.1)9n0.02

≤ 2n
0.2

,
the proof is complete.

A relatively minor issue Unfortunately, it turns out that CPA security does not guarantee that
it is secure to encrypt the secret key with itself (exercise...). We overcome this issue by using
a common cryptographic technique— making an assumption: we’ll assume that even given

2A more formal way to define degree is to note that the value of any gate of the circuit is always some m-variable
polynomial F : GF(2)m → GF(2), the degree of the circuit is the maximum degree of any polynomial that appears
in its gates. In particular, if a circuit has degree d then the output of the circuit has to be a polynomial of degree at
most d.

4

oracle access to the encryption oracle, one cannot distinguish an encryption of the secret key
and an encryption of the all zero string.

This notion is called circular security and it is a subclass of a more general notion of key
dependent message (KDM) security. While there are examples of CPA (and even CCA)
secure schemes that are not circular secure, there are no known attacks against natural
cryptosystems (e.g., El-Gamal etc..) and so it seems a reasonable assumption to assume
that they are circular secure. In recent years, a few encryption schemes were proven to be
circular secure (and satisfy some notions of KDM security as well) under relatively standard
assumptions. It is also easy to construct KDM secure schemes in the random oracle model,
and there are ways to try to combine this construction with the homomorphic scheme to make
it even more likely it is circular secure.

In any case, we will assume this scheme is circular secure. Hopefully at some point someone
will manage to prove that it is, and get rid of this assumption.3

As I already mentioned, the question of getting any plausible homomorphic encryption
scheme, even with only heuristic security such as the random oracle model, was open for 30
years, so we shouldn’t complain too much even if the solution uses somewhat non-standard
assumptions.

A major issue The major issue is that we had no reason to believe that our circuit will be of
degree at most n0.01. Generally a circuit over {0, 1}m is expected to have degree about
m ∼ n5, and indeed I believe one can verify that the decryption circuit actually computes
a polynomial of degree at least n/100 (and hence we cannot implement it by a circuit with
degree smaller than that). So we’re off by a polynomial factor.

We will tackle this issue by making an additional tweak to the encryption scheme, intended
to “squash” the decryption circuit and make it of smaller degree.

Getting the Clean operation— squashing decryption

While at a high level, what we do amounts to squashing the decryption circuit, and in the papers is
described in this way, our goal is just to get the Clean operation in some way. Thus, we will just show
what we do to implement Clean. We will not change the actual encryption and decryption algorithms
at all, just add some public parameters. Thus, all the properties of our scheme (correctness,
homomorphism, and rerandomization) will be preserved.

Sparse subset sum assumption We’ll need to use another cryptographic assumption. The sub-
set sum problem is the question, given m n-bit numbers α1, . . . , αm and a target number β,
whether there exists a subset T ⊆ [m] such that

∑
i∈T αi = β. When m is sufficiently large

as a function of n then this is considered a hard problem. We will assume hardness of a
average-case decision variant of this problem where the set T is relatively small (of size nε for
some ε > 0).

Sparse Subset Sum (SSE) Assumption: For any n, ε > 0 and β ∈ [−2n,+2n], the
following two distributions on α1, . . . , αm are computationally indistinguishable: Case (I):
α1, . . . , αm are chosen randomly and independently in [−2n,+2n] and Case (II) we choose

3Even without this assumption one can get a limited homomorphic encryption scheme, where the public key grows
with the depth of the circuit, see the papers and Gentry’s thesis.

5

a set T ⊆ [m] of size nε at random, for i 6∈ T choose αi randomly and independently from
[−2n,+2n], while on the other hand we ensure that

∑
i∈T αi = β. (Technically we do so by

setting for every i ∈ T , α′i be a random number in [−2n,+2n], letting β′ =
∑

i∈T α
′
i and

setting αi = α′i − β′ + β/|T |.)
Actually we’ll use the SSE assumption for n bit fractions in (−1,+1). This is clearly equivalent
by just scaling by a factor of 2n.

Implication of SSE assumption The subset sum assumption implies that we will not harm
security if we include in the public parameters numbers α1, . . . , αm ∈ (−1,+1) chosen such
that there is a set T of size k = n1/1000 satisfying that

∑
i∈T αi = 1/P .

(We assume here exact equality but in reality we’ll truncate the numbers after say the n5

digit and that will ensure this equality holds with precision as good we need.)

Now, instead of an encryption of P , we will provide in the public parameters an encryption
of T . Specifically, we will set for i ∈ [m] Yi to be an encryption (with noise parameter 2n

0.1
)

of 1 if i ∈ T and of 0 if i 6∈ T .

We also make the circular security assumption that this is safe to publish in the public
parameters.

Implementation of Clean: Now we can show the implementation of Clean. Again, we are given
a ciphertext X = QP + 2E + b where |E| ≤ 2n

0.9
and our goal is to come up with X ′ =

Q′P + 2E′ + b such that |E′| ≤ 2n
0.3

. We are going to do the following:

1. Let a = X (mod 2). Note that b = (X − bX/P eP) (mod 2) and hence, (since P is
odd) b = a⊕ bX/P e (mod 2). Our goal will be to produce a ciphertext X ′′ encrypting
a′ = bX/P e (mod 2). We can then set X ′ = X ′′ + a.

2. We compute the numbers Z1, . . . , Zm where Zi = Xαi. Note that
∑

i∈T Zi = X/P . We

let Z̃i denote the truncation of number Zi + 2 where we throw away all the binary digits
corresponding to 2i for i > 0 or i ≤ −2 log k. We claim that⌊∑

i∈T
Z̃i

⌉
(mod 2) = bX/P e (mod 2)

this is because (1) throwing the digits corresponding to 2−2 log k or smaller can introduce
at most k/k2 < 1/k < 1/100 difference to the sum of the Zi’s. But since X/P was very
close to an integer, after changing it by adding a number in [−1/100,+1/100] it will
still round to the same number and (2) changing digits corresponding to 21 or larger
will only add or substract an even number from X/P , and that will not change its value
modulo 2.

Adding 2 clearly doesn’t change the value (mod 2) and just allows us to assume that
the Z̃i’s are numbers between 0 and 2 rather than between −1 and 1. That is, they are
numbers that written in binary have the form x.xxxxx— one binary digit to the left of
the ”binary point” and 2 log k − 1 digits to its right.

3. Let yi be equal to 1 if i ∈ T and to 0 if i 6∈ T . Let zi,1,, zi,2 log k denotes the binary
digits of the number yiz̃i. That is, if yi = 0 then zi,j = 0 for all j, and otherwise zi,j is
the jth digit of Z̃i.

6

We can obtain Zi,j that is a ciphertext for zi,j by multiplying the ciphertext Yi from the
public parameter with the j digit of Z̃i.

We now consider the following two functions:

• SUM : {0, 1}m(2 log k) → {0, 1}3 log k takes as inputs m numbers of 2 log k bits in
[0, 2) of the form x.xxxxx, and computes their sum, where we have the guarantee
that at most k of these numbers are not zeroes.

• ROUND : {0, 1}2 log k → {0, 1} takes a number of the form x.xxxx, rounds it to the
nearest integer (either 0, 1 or 2) and outputs the parity of that integer.

We claim that both these functions can be implemented by circuits of poly(m, k) size
and degree at most k3. This claim immediately implies the Clean operation, since we
can just combine these circuits (this at most multiplies the degrees), and get a circuit
of degree less than k6 that given the zi,j inputs outputs the value a′ = bX/P e (mod 2).
We can then apply this circuit to the Zi,j ciphertexts to get an encryption of a′ with

noise at most 2n
0.019k12 ≤ 2n

0.3
for our choice of k = n1/1000. (The above calculations

have a lot of slackness.)

For ROUND the claim is straightforward (and even with degree 2 log k)— any function
mapping {0, 1}` to {0, 1} can be expressed as a polynomial of at most 2` terms and
degree `.

For SUM the claim follows by somewhat tedious calculations showing that if you just
follow the gradeschool algorithm for addition, and are careful to note that you never
need more than O(log k) carry bits (because there are at most k non zero numbers) then
the resulting circuit has degree at most k2 or so.

Bottom line: We have obtained a fully homomorphic private key encryption!! This is already
good enough for our applications such as cloud computing, zero knowledge, and multiparty
computation (where one side generates the keys and the other just applied EV AL), but it’s
also very easy to transform it to a public key encryption.

7

