
Lecture 18 - Zero Knowledge (cont), identification protocols

Boaz Barak

April 7, 2010

Reading Boneh-Shoup chapter 18.

Review Protocol QR

Statement x is a quadratic residue mod n.

Public input x , n

Prover’s (Alice) private input. w such that x = w2 (mod n).

P → V Alice chooses random u←R Z∗n and sends y = u2 to Bob.

P ← V Bob chooses b←R {0, 1}
P → V If b = 0, Alice sends u to Bob. If b = 1, Alice sends w · u (mod n).

Verification. Let z denote the number sent by Alice. Bob accepts the proof in the case
b = 0, z2 = y (mod n). In the case b = 1, Bob accepts the proof if z2 = xy (mod n).

Simulator Uses same for b = 0, uses y = z2x−1 for b = 1.

Proofs of knowledge A notion we did not talk a lot about in class is proof of knowledge. Basically
this is a stronger form of soundness that says that if P ∗ convinces the verifier with noticeable
probability (i.e., more than the soundness error), then not only this means that the statement
x is in L but it actually means that P ∗ “knows” a witness in the sense that it could obtain a
witness by running some algorithm. This is often useful for proving security of identification
protocol where simple soundness falls short of what we need to make the proof work.

We say that (P, V ) is a proof of knowledge if soundness is replaced by the following stronger
requirement:

Knowledge soundness with error δ For every possibly cheating prover P ∗, and every x, if P ∗

satisfies that
Pr[outV 〈P ∗, Vx,r〉 = accept] > δ + ρ

(where this probability is taken over the random choices r of the verifier)

then there’s a algorithm E (called a knowledge extractor) with running time polynomial in
1/ρ and the running time of P ∗, that on input x outputs a witness w for x (in our example w
is a square root of c) with probability at least 1/2. Note this indeed implies normal soundness
with soundness error δ.

Note that proof of knowledge condition makes sense even if there’s no question if the statement
is true, as we’ll see below.
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Parallel repetition. We can show that parallel repetition reduces the soundness to 2−k by giving
the even stronger statement: let~b ∈ {0, 1}k denote the queries the verifier makes in k copies of
the parallel repeated version. For every fixed k initial messages y1, ...., yk, and ~b 6= ~b′, one can
obtain the square root of x from two accepting transcripts of the form (y1 · · · yk;~b; z1 · · · ck)
and (y1 · · · yk; ~b′; z1 · · · ck). This allows to show proof of knowledge using rewinding.

A three round protocol that is (perfect) honest verifier zero knowledge and has this knowledge
soundness property is called a Σ protocol.

Honest verifier zero knowledge Parallel repetition does preserve honest verifier zero knowl-
edge.

Schnorr’s identification protocol Schnorr suggested the following proof of knowledge for the
discrete logarithm:

Review Protocol Schnorr

Statement Alice knows discrete log of h w.r.t. g, where these are members of some group
G of order q, and g is a generator.

Public input g, h

Prover’s (Alice) private input. x such that h = gx.

P → V Alice chooses random r ∈ Zq, and sends a = gr.

P ← V Bob chooses b←R Zq and sends b to Alice.

P → V Alice sends c = r + xb (mod q) to Bob.

Verification. Bob verifies that ahb = gc.

Completeness obvious.

Proof of knowledge We have the Σ condition: if b 6= b′ then given a and b 6= b′ and c 6= c′ such
that ahb = gc and ahb

′
= gc

′
we divide the two equations by each other to get hb−b

′
= gc−c

′

but since we know b, b′ we can take this to the power (b − b′)−1 (mod q) to get an equation
of the form h = gx.

Honest verifier zero knowledge The simulator does the following: choose b, c←R Zq, choose a
as h−bgc.

Application for identification w.r.t passive adversaries

Random oracle making Σ protocols non-interactive.

OR trick We now show how to transform a Σ protocol into an identification protocol that is secure
w.r.t. active adversaries. We suppose we have a Σ protocol for proving knowledge of x given
f(x), where f is a one-way function. We show the following OR Protocol to prove, given
y1, y2 that Alice knows either a preimage for y1 or a preimage for y2 (or possibly both). We
assume there is a Σ protocol Π with messages (a, b, c) for proving knowledge of one preimage.

We first describe the protocol from the verifier’s (Bob) point of view, without explaining how
Alice implements her strategy.

Public input y1, y2
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Alice (prover’s) private input either x1 such that y1 = f(x1) or x2 such that y2 = f(x2).

First message Alice sends two messages a1, a2 for two instances of the Σ protocol: one to
prove she knows x1 and the other to prove she knows x2. (Note that she doesn’t know
both.)

Second message Bob chooses b at random from the challenge space of the Σ protocol (say
GF(2)k or Zq) and sends b to Alice.

Third message Alice chooses b1, b2 such that b1 + b2 = b and continues both interactions as
if Bob sent b1 in the first instance and b2 in the second instance. Bob verifies that both
instances accept.

Completeness Here is one of the rare examples that even completeness is not trivial— how does
Alice manage to succeed in two instances where she only knows one witness? The idea is the
following: suppose that she knows only x2. She will choose b1 at random herself, and use
the simulator to compute her first message a1 in the first instance. Then when Bob sends
her b, she will just compute b2 = b− b1 and continue in both instances, in the first using the
simulator and the second using the real prover strategy.

Soundness and knowledge soundness This is still a Σ protocol: suppose that we have fixed
messages a1, a2 and b 6= b′ such that Alice can find b1, b2, b

′
1, b
′
2 and c1, c2, c

′
1, c
′
2 such that

b = b1 + b2, b
′ = b′1 + b′2 and all the following four transcripts are accpeting:

(a1, b1, c1)

(a1, b
′
1, c
′
1)

(a2, b2, c2)

(a2, b
′
2, c2)

we claim that it must be the case that either b′1 6= b1 or b2 6= b′2. Indeed, otherwise we’d have
b′1 = b1 and b′2 = b2 and hence b1 + b2 = b′1 + b′2.

Honest verifier zero knowledge This is also honest verifier ZK, but this is actually not the
important property we need from this protocol.

Security against cheating verifiers. We show the following result:

Lemma 1. Let Bob∗ be any (possibly) cheating polynomial-time verifier, and suppose that
x1, x2 are chosen at random and we set yi = f(xi) then for j = 1, 2 and i = 1, 2 the proba-
bility that Bob∗ outputs a preimage of yi when interacting with Alice that gets as input xj is
negligible.

Proof. Let’s prove the lemma for i = 2 (the proof for i = 1 is symmetric). The main point
is the following: no matter what Bob does, the interaction with Alice that gets as input x1
and the interaction with Alice that gets as input x2 is identical. In both cases, Bob gets
exactly the same distribution as if Alice would have run the honest prover for both instances
and chosen at random b1, b2 such that b1 + b2 = b. So it suffices to prove this for i = 2 and
j = 1. But then neither Bob nor Alice get the preimage of y2, and if Bob could obtain such
a preimage with non-negligible probability then we can combine both Bob and Alice to get
an invertor for the one-way function f .

Zero knowledge protocol for Hamiltonian cycle
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