
COS 424
Homework #3
Due Tuesday, March 30th

See the course website for important information about collaboration and late policies, as well as where and
when to turn in assignments.

Program and data files

This homework uses again the Reuters21578 dataset. Please download the file “hw3data.tar.gz” which is
available from http://www.cs.princeton.edu/courses/archive/spring10/cos424/w/hw3. This archive
contains the following files:

• reuters train.txt, reuters test.txt contain the preprocessed training and testing sets. Although
we still use the “ModApte” split, these files are not exactly the same as those you were supposed
to prepare during homework 2. Each line represents a single document and contains the numerical
document ID followed by a sparse vector containing the number of occurences of each term in each
document. These counts are not normalized.

• reuters dict.txt provides the association between term index and the term themselves. Each line
contains the term index, the term string, the total count of occurrences of this term in the training set,
and the number of training documents containing the term. We have discarded all terms that were
less than four characters long or appeared in less than three training documents. The total number of
terms should therefore be slightly lower than the number of terms in the homework 2 files.

• A couple C++ files and a Makefile contain the almost complete implementation of two programs
named umix and humix. The main source files are umix.cpp and humix.cpp. Part of the homework
consists of completing and running these programs.

• The ancillary files vector.h, vector.cpp, util.h, util.cpp, and wrapper.h contain utility routines
that you do not need to modify. The appendix of this document provides a brief description of the
vector classes implemented by files vector.h and vector.cpp.

• File homework.tex contains the LATEX source of this document.

Part 1 – Unigram mixture model

We wish to group the Reuters documents into semantically meaningful clusters that we call topics. We plan
to achieve this using a mixture model whose k components represent k distinct topics. Let random variables
X and Y represent a document and its topic. The unigram mixture model can then be written as

Pθ(X) =
∑k
y=1 Pθ(Y = y)Pθ(X|Y = y) ,

Pθ(Y = y) = λy

Pθ(X = t1t2 . . . tL|Y = y) = βL pyt1 pyt2 . . . pytL .

In the above expressions, t1t2 . . . tL represents the sequence of terms in the document X. The parameters θ
of the model are (i) the prior probabilities λy of each component, (ii) the probabilities βL that a document
contains L terms, and (iii) the probability pyt of occurrence of term t for component y. These parameters
satisfy the normalization constraints

∑k
y=1 λy = 1 ,

∑∞
L=1 βL = 1 , and ∀y

∑
t pyt = 1 . This model makes

the assumption that the document length does not depend on the document topic because we use the same
parameters βL for all components. We do this because our model would too easily cluster documents by
length instead of by content.

1



Question 1a Show that the log likelihood logL(θ) =
∑
i logPθ(X = xi) can be written as the sum of

an expression that depends only on the βL parameters and an expression that depends only on the λy
and pyt parameters.

These two parts of the log likelihood can be optimized separately. Since we are not interested in modeling
the document length, we can simply ignore the βL and simply write

Pθ(X = xi|Y = y) =
∏
t

p nit
yt ,

where nit represents the number of occurrences of term t in document xi.

The provided C++ program umix maximizes the likelihood of this model using the Expectation Maximization
algorithm. The main source code umix.cpp contains numerous comments. However there is a critical
expression missing in the middle of the M step of the EM algorithm. The missing expression is clearly
marked with text INSERT CORRECT CODE HERE.

Question 1b Complete the missing expression in the M step. Provide a listing of that segment of the
code showing your completion.

Here is the program output for computing a mixture with 5 components:

$ ./umix reuters_train.txt reuters_dict.txt 5 reuters_clus5.txt
Read 9603 documents
Read 7303 terms (maxid 7303)
Initializing 5 components
Pass 66 logl=-4.90179e+06
Saving components
0.339047 share offer issu corp debentur common dividend stock compani qtly
0.241021 loss profit billion year oper januari quarter februari rose from
0.186173 tonn wheat export market grain coffe crop usda sugar quota
0.137562 bank trade that brazil countri japan debt minist japanes foreign
0.0961973 mine barrel gold ship refineri crude said compani feet plant

The output summarizes each component on a line displaying its λy coefficient and its ten most distinctive
terms.

Question 1c Run umix on the Reuters data for mixtures of 15 and 30 components. Can you recognize
topics corresponding to some of the manual labels provided with the Reuters21578 dataset?

Question 2 – Hierarchical Clustering for UMIX

We now would like to organize the clusters hierarchically. Program humix follows an agglomerative clustering
strategy. It starts from the topics computed by umix and repeatedly merges the two closest topics until all
topics have been merged into a single component.

The distance between two topics is determined using a heuristic formula implemented by the function
mergeDistance() in file humix.cpp. Given two topics g and j, the function first computes the term distri-
bution p∗t of the merged topic

p∗t =
λgpgt + λjpjt
λg + λj

2



and returns
λgH(pgt, p∗t) + λjH(pjt, p∗t)

where the Hellinger distance is
H(pt, qt) =

∑
t

(
√
pt −

√
qt)

2
.

Program humix also computes the likelihood on both the training set and a validation set. This is achieved
by function computeLogLikelihood() in file humix.cpp. However this function lacks a couple critical
expressions clearly marked with text INSERT CORRECT CODE HERE.

Question 2a Complete the missing parts of function computeLogLikelihood(). Provide a listing of
that segment of the code showing your completion. There are strong similarities between this code and
the E step of the umix program.

Here is the beginning of the program output for the 5 components mixture:

$ ./humix reuters_train.txt reuters_test.txt reuters_dict.txt reuters_clus5.txt
Read 9603 documents
Read 3299 documents
Read 7303 terms (maxid 7303)
Read 5 components
---------------------- components: 5
Train logL = -4.90179e+06
Valid logL = -1.5112e+06
#0: 0.339047 share offer issu corp debentur common dividend stock compani qtly
#1: 0.241021 loss profit billion year oper januari quarter februari rose from
#2: 0.186173 tonn wheat export market grain coffe crop usda sugar quota
#3: 0.137562 bank trade that brazil countri japan debt minist japanes foreign
#4: 0.0961973 mine barrel gold ship refineri crude said compani feet plant

Merging #2 and #3 as #1
---------------------- components: 4
Train logL = -4.93902e+06
Valid logL = -1.51722e+06
#0: 0.339047 share offer issu corp common debentur stock qtly bond april
#1: 0.323735 tonn export bank trade that market countri wheat brazil minist
#2: 0.241021 loss profit year billion oper januari quarter februari rose from
#3: 0.0961973 mine barrel gold ship refineri said crude feet plant grade

Merging #1 and #3 as #0
---------------------- components: 3
Train logL = -4.97703e+06
Valid logL = -1.52663e+06
...

Question 2b Run humix on the 15 and 30 components mixtures from question 1c. For each of these runs,
produce a plot of the training and validation log likelihoods as a function of the number of components.
Clearly mark the “elbow” if you can see it.

Question 2c Could we make humix run faster? How?

If you are interested by topic models and want to learn much more sophisticated approaches, you should
definitely discuss with Sean Gerrish and see Professor David Blei. . .

3



Appendix – Vector classes

The provided source code relies extensively on two vector classes defined by files vector.h and vector.cpp.
Class FVector and SVector respectively represent a dense vector and a sparse vector. Both classes define
operators << and >> to read and write a textual representation of the vector. This is useful for loading and
saving the data files. Both classes provide a collection of nearly identical functions:

x.size() Return the size of vector x.
x.get(i) Return the i-th coefficient of vector x.
x.set(i,v) Set the i-th coefficient of vector x.
x.add(s) Add scalar s to vector x.
x.add(y) Add vector y to vector x.
x.scale(s) Multiplies all coefficients of x by s.
dot(x,y) Return the dot product of vectors x and y.
combine(x,a,y,b) Return the vector ax + by.

When the index is larger than the vector size, function x.get() returns 0 and function x.set() automatically
increases the vector size. You can also use the standard bracket syntax x[i] to quickly access the i-th
coefficient of a FVector x. You must however be certain that the vector size is larger than i.

Sparse vector are implemented as a sequence of records corresponding to the nonzero coefficient. Each record
contains the coefficient index and the coefficient value. Records are sorted by increasing index value. The
following idiom can be used to iterate over all the nonzero coefficients of a SVector x:

for (const SVector::Pair *p = x; p->i >= 0; p++) {...}
In the body of the loop, p->i represents the coefficient index, and p->v represents the coefficient value.

4


