
COS 424
Homework #2
Due Tuesday, March 9th

See the course website for important information about collaboration and late policies, as well as where and
when to turn in assignments.

Question 1 – Classification with rejection

Consider a classification problem with inputs x and classes y. Assuming that the conditional probability
distribution of the classes given the inputs is known, the Bayes optimal decision rule is

fBayes(x) = arg max
y

P {Y = y|X = x} .

The classifier will be used in a situation where it is less expensive to reject an input than to return an
erroneous class. Consider for instance a machine that reads zip code on envelopes. Asking an operator to
examine the ambiguous pieces of mail can be considerably cheaper than shipping them to the wrong place.

A classifier able to reject is simply a classifier with an additional class reject. Although this extra class is
always incorrect, it could be interesting to output it because the associated cost is smaller than the cost of
an ordinary misclassification.

We assume that a correct classification costs 0, a misclassification costs 1, and a rejection costs c < 1. We
are looking for a new optimal decision rule that tells us when to reject an input x, and, when we are not
rejecting, which class to output.

Express the new optimal decision rule as a function of c and P {Y |X}.

How did you reach this result?

We can approach this problem by considering two cases: (1) reject and (2) not reject. If we do not
reject, we must select an optimal y given x. This is still fBayes(x), and so the expected cost of not
rejecting is

max
y

P {Y = y|X = x} × cost(correct) + (1−max
y

P {Y = y|X = x})× cost(incorrect) (1)

= max
y

P {Y = y|X = x} × 0 + (1−max
y

P {Y = y|X = x})× 1 (2)

= (1−max
y

P {Y = y|X = x}), (3)

whereas the cost of rejecting is c. This then tells us that, to minimize the expected cost, we should
reject exactly when c ≤ 1−maxy P {Y = y|X = x}:{

Reject if c ≤ 1−maxy P {Y = y|X = x}
fBayes(x) = arg maxy P {Y = y|X = x} if c > 1−maxy P {Y = y|X = x}

Question 2 – Preprocessing the Reuters21578 dataset

Get the following files from http://www.cs.princeton.edu/courses/archive/spring10/cos424/w/hw2 :
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• reuters21578.tar.gz is an archive containing manually labeleled newswire stories. Please read care-
fully the included README file. We are interested in the five topic labels earn, acq, crude, grain, and
trade. We want to build five classifiers indicating whether a particular story is associated with each
of these five topics.

• porter stemmer.c is the C source code of the Porter stemmer, a program that takes an english text
and transforms all words into words stems by removing suffixes such as “–ing”, “–ication”, etc.

• stopwords.txt is a list of english words that are so common that they say very little about the topic
of the documents that contain them.

First we have to split the data into a training set and a test set. We will use the Modapte split that is
described in the README file: 9603 training stories and 3299 testing stories. Our goal in this problem is to
encode each story j as a vector xj whose coefficients xij measure the presence of a particular word stem in
the text of a story. The vector dimension is therefore the size of the dictionary.

• We only consider the purely alphabetical words. Numbers and punctuation are eliminated.

• We eliminate all the stop words.

• We consider word stems calculated by the Porter stemmer. Therefore words classify, classifies,
and classified are considered identical.

• We only consider word stems that appear in at least three different training stories.

We can therefore compute a matrix of counts nij indicating the number of occurrences of the word stem i
in story j. Since these numbers can vary greatly, we will normalize them as follows. Let N be the number
of training stories. The number Mi of training documents in which word i appears can be computed from
the nij . We first define

x̃ij =
{

(1 + log nij) log N
Mi

if nij 6= 0 ,
0 if nij = 0 .

and then compute the vector xj as

xij =
x̃ij√∑

i x̃
2
ij

.

The first operation is a variant of TF/IDF normalization that is known to be effective for preprocessing text
because it emphasizes words that appear in few documents. The second operation ensures that ‖xj‖ = 1,
making the final encoding less dependent on the length of the story. Note that the vectors xj are very sparse:
most coefficients are null.

We want to produce a training file and a testing file for each of the five classification problems, corresponding
to the five topics earn, acq, crude, grain, and trade. As their name suggests, the training files contain the
training examples, and the testing files contain the testing examples.

Each example is represented by a sequence of space separated token on a single line. The first token is the
class: +1 if the story is associated with this topic and −1 otherwise. The following tokens describe the
nonzero coefficients xij described above. Each token has the form < i >:< v > where < i > is a word
stem index and < v > is the coefficient xij . Word stem indices should appear in increasing order. For
compatibility with existing software, you should start numbering the word stems from 1 (not from 0.)

For instance a file could start like this:

+1 373:0.1273004158 428:0.2471911172 431:0.1934602396 579:0.1517836121 ...
+1 524:0.1687309356 593:0.1795787602 1250:0.2017339215 ...
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Please report the following information:

• The dictionary size.

Around 8,000. Depending on your approach, you generally should have had this give or take about
1,500.

• The average number of non zero coefficients in the training and testing patterns.

Here we’re again looking for ballpark numbers.

– Training set: 49.63
– Testing set: 42.12

If you take only the text in the body section, you get

– Training set: 47.15
– Testing set: 37.32

• The number of training and testing examples of each class for each topic.

These numbers did not depend on choices in preprocessing and should have been exact.
Training set

Positives Negatives Total
earn 2877 6726 9603
acq 1650 7953 9603
crude 389 9214 9603
grain 433 9170 9603
trade 369 9234 9603

Testing set
Positives Negatives Total

earn 1087 2212 3299
acq 719 2580 3299
crude 189 3110 3299
grain 149 3150 3299
trade 117 3182 3299

Data preprocessing is an error prone process. Although you are expected to go through all the steps yourself,
you are strongly encouraged to cross-check your results by exchanging small pieces of information with your
classmates such as counts of examples, etc. Please explain the procedure you have used to check the results.
Grading will take into account the ingenuity of the procedures.

Standard procedures might include selecting a small sample of words (ideally of high, medium, and low
frequencies) and comparing their counts with other students’ counts, then checking the original data
to confirm that discrepancies could be explained by preprocessing decisions. This also might include
sampling small numbers of documents to ensure that random words in them counts were correctly
accounted for after preprocessing.
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Question 3 – Text document categorization

We will now use these files for text document categorization experiments. For simplicity, we will use the
testing set as a validation set. We should not do that in the real world, but that will be sufficient for the
homework.

The page http://www.cs.princeton.edu/courses/archive/spring10/cos424/w/hw2 contains a pointer
to LibLinear which is a well maintained software package for linear classification. You should first download
it and compile it.

• The LibLinear program train implements linear classifiers with a number of loss functions selected
by the command line option -s. We are interested in options -s0 which implements the log loss
`(z) = log(1+e−z) and option -s3 which implements the hinge loss `(z) = max(0, 1−z). The software
minimizes a cost function of the form

C(w) =
1
2
‖w‖2 + C

n∑
i=1

`(yi w>xi) .

Use option -C to specify the parameter C that controls the tradeoff between keeping the weight vector
w small and minizing the empirical errors. This is essentially similar to the parameter ε we have been
using for the Adult dataset in the second lecture.

• The LibLinear program predict can then be used to run the computed classifier on the testing set.
This program has an option -b to output scores representing the estimated probability of belonging to
class +1. These scores are derived from the dot products w>x but are normalized in range [0, 1].

For each of the five classification problems, and for each of the two choices of loss functions -s0 and -s3,
produce a plot comparing the ROC measured on the testing set for the classifiers obtained with C = 0.01,
C = 0.1, and C = 1.

Each point of the ROC is obtaining by plotting(
#negatives recognized as positives

#negatives
,

#positives recognized as positives
#positives

)
for a classifier that recognizes as positives all the testing examples with a score greater than a certain
threshold. When you vary the threshold, you get the curve. Make sure to produce interesting curves by
setting properly the bounds of the axes!

ROC plots differed slightly depending on choices made in preprocessing. Most should
have been very similar to the following plots, which were generated by Sam Freeman:
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Can you choose a better value of C ?

To find a better value of C, it’s reasonable to consider two things: a reasonable metric for “better”
and a range of values for C. One reasonable metric for better (depending on application) is area under
the ROC (AUC). Note that it’s risky to look at performance at a fixed threshold, since this might
correspond to different places on the ROC for different C, although one might focus on a fixed line
through the ROC.

We can check for better values of C by looking at values in the range [0.01, 1.0] as well as out-
side of it, ideally a couple of orders of magnitude higher (especially because the ROC plots indi-
cated that C = 1 was generally the best classifier for log loss and hinge loss). Ranging up to 106,
for example, we find that AUC may peak close to 10 for log loss, and it peaks at just under 1.0
for hinge loss. The following plot showing this range was graciously provided by Michael Gelbart:
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Bonus questions

Provide an intuitive interpretation of the area under the ROC curve.

As described in class today (April 1), we can interpret the AUC as follows: given a randomly selected
positive example and a randomly selected negative example, the AUC is the probability that the
classifier will correctly tell you which is the positive, based on comparing the classifier’s discriminant
function applied to each.

Provide a plot of the frequency of words against the rank of words, with the x and y axes in log scale.

The curve should have had about the same form as the red cuve below (with different axes). This shape
(including the elbo) is observed in many bodies of human-language text. If you’re curious about this
phenomenon, you can find a little more information at Wikipedia’s article on Zipf’s law.
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(Image author Victor Grishchenko; covered by the LGPL; further information available here).
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