
COS 424
Homework #2
Due Tuesday, March 9th

See the course website for important information about collaboration and late policies, as well as where and
when to turn in assignments.

Question 1 – Classification with rejection

Consider a classification problem with inputs x and classes y. Assuming that the conditional probability
distribution of the classes given the inputs is known, the Bayes optimal decision rule is

fBayes(x) = arg max
y

P {Y = y|X = x} .

The classifier will be used in a situation where it is less expensive to reject an input than to return an
erroneous class. Consider for instance a machine that reads zip code on envelopes. Asking an operator to
examine the ambiguous pieces of mail can be considerably cheaper than shipping them to the wrong place.

A classifier able to reject is simply a classifier with an additional class reject. Although this extra class is
always incorrect, it could be interesting to output it because the associated cost is smaller than the cost of
an ordinary misclassification.

We assume that a correct classification costs 0, a misclassification costs 1, and a rejection costs c < 1. We
are looking for a new optimal decision rule that tells us when to reject an input x, and, when we are not
rejecting, which class to output.

Express the new optimal decision rule as a function of c and P {Y |X}.

How did you reach this result?

Question 2 – Preprocessing the Reuters21578 dataset

Get the following files from http://www.cs.princeton.edu/courses/archive/spring10/cos424/w/hw2 :

• reuters21578.tar.gz is an archive containing manually labeleled newswire stories. Please read care-
fully the included README file. We are interested in the five topic labels earn, acq, crude, grain, and
trade. We want to build five classifiers indicating whether a particular story is associated with each
of these five topics.

• porter stemmer.c is the C source code of the Porter stemmer, a program that takes an english text
and transforms all words into words stems by removing suffixes such as “–ing”, “–ication”, etc.

• stopwords.txt is a list of english words that are so common that they say very little about the topic
of the documents that contain them.

First we have to split the data into a training set and a test set. We will use the Modapte split that is
described in the README file: 9603 training stories and 3299 testing stories. Our goal in this problem is to
encode each story j as a vector xj whose coefficients xij measure the presence of a particular word stem in
the text of a story. The vector dimension is therefore the size of the dictionary.

• We only consider the purely alphabetical words. Numbers and punctuation are eliminated.

• We eliminate all the stop words.

1



• We consider word stems calculated by the Porter stemmer. Therefore words classify, classifies,
and classified are considered identical.

• We only consider word stems that appear in at least three different training stories.

We can therefore compute a matrix of counts nij indicating the number of occurrences of the word stem i
in story j. Since these numbers can vary greatly, we will normalize them as follows. Let N be the number
of training stories. The number Mi of training documents in which word i appears can be computed from
the nij . We first define

x̃ij =
{

(1 + log nij) log N
Mi

if nij 6= 0 ,
0 if nij = 0 .

and then compute the vector xj as

xij =
x̃ij√∑

i x̃
2
ij

.

The first operation is a variant of TF/IDF normalization that is known to be effective for preprocessing text
because it emphasizes words that appear in few documents. The second operation ensures that ‖xj‖ = 1,
making the final encoding less dependent on the length of the story. Note that the vectors xj are very sparse:
most coefficients are null.

We want to produce a training file and a testing file for each of the five classification problems, corresponding
to the five topics earn, acq, crude, grain, and trade. As their name suggests, the training files contain the
training examples, and the testing files contain the testing examples.

Each example is represented by a sequence of space separated token on a single line. The first token is the
class: +1 if the story is associated with this topic and −1 otherwise. The following tokens describe the
nonzero coefficients xij described above. Each token has the form < i >:< v > where < i > is a word
stem index and < v > is the coefficient xij . Word stem indices should appear in increasing order. For
compatibility with existing software, you should start numbering the word stems from 1 (not from 0.)

For instance a file could start like this:

+1 373:0.1273004158 428:0.2471911172 431:0.1934602396 579:0.1517836121 ...
+1 524:0.1687309356 593:0.1795787602 1250:0.2017339215 ...

Please report the following information:

• The dictionary size.

• The average number of non zero coefficients in the training and testing patterns.

• The number of training and testing examples of each class for each topic.

Data preprocessing is an error prone process. Although you are expected to go through all the steps yourself,
you are strongly encouraged to cross-check your results by exchanging small pieces of information with your
classmates such as counts of examples, etc. Please explain the procedure you have used to check the results.
Grading will take into account the ingenuity of the procedures.

2



Question 3 – Text document categorization

We will now use these files for text document categorization experiments. For simplicity, we will use the
testing set as a validation set. We should not do that in the real world, but that will be sufficient for the
homework.

The page http://www.cs.princeton.edu/courses/archive/spring10/cos424/w/hw2 contains a pointer
to LibLinear which is a well maintained software package for linear classification. You should first download
it and compile it.

• The LibLinear program train implements linear classifiers with a number of loss functions selected
by the command line option -s. We are interested in options -s0 which implements the log loss
`(z) = log(1+e−z) and option -s3 which implements the hinge loss `(z) = max(0, 1−z). The software
minimizes a cost function of the form

C(w) =
1
2
‖w‖2 + C

n∑
i=1

`(yi w>xi) .

Use option -C to specify the parameter C that controls the tradeoff between keeping the weight vector
w small and minizing the empirical errors. This is essentially similar to the parameter ε we have been
using for the Adult dataset in the second lecture.

• The LibLinear program predict can then be used to run the computed classifier on the testing set.
This program has an option -b to output scores representing the estimated probability of belonging to
class +1. These scores are derived from the dot products w>x but are normalized in range [0, 1].

For each of the five classification problems, and for each of the two choices of loss functions -s0 and -s3,
produce a plot comparing the ROC curves measured on the testing set for the classifiers obtained with
C = 0.01, C = 0.1, and C = 1.

Each point of the ROC curve is obtaining by plotting(
#negatives recognized as positives

#negatives
,

#positives recognized as positives
#positives

)
for a classifier that recognizes as positives all the testing examples with a score greater than a certain
threshold. When you vary the threshold, you get the curve. Make sure to produce interesting curves by
setting properly the bounds of the axes!

Can you choose a better value of C ?

3


