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Fundamental Questions 

Q.  What is a general-purpose computer? 
Q.  Are there limits on the power of digital computers? 
Q.  Are there limits on the power of machines we can build? 

Pioneering work in the 1930s. 
  Princeton == center of universe. 
  Automata, languages, computability, universality, complexity, logic. 

David Hilbert
 Kurt Gödel
 Alan Turing
 Alonzo Church
 John von Neumann


7.4  Turing Machines 

Alan Turing (1912-1954) 
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Turing Machine 

Desiderata.  Simple model of computation that is "as powerful" as
 conventional computers. 

Intuition.  Simulate how humans calculate. 

Ex.  Addition. 

0 0 0 0 

0 0 0 1 

0 0 0 0 

2 3 4 5 

0 0 + 3 

0 0 0 0 

1 4 1 5 

0 0 0 0 

0 0 0 

6 0 0 

9 0 0 

0 0 0 

0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 
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Turing Machine:  Tape 

Tape. 
  Stores input, output, and intermediate results. 
  One arbitrarily long strip, divided into cells. 
  Finite alphabet of symbols. 

Tape head. 
  Points to one cell of tape. 
  Reads a symbol from active cell. 
  Writes a symbol to active cell. 
  Moves left or right one cell at a time. 

tape head 

tape 

tape head 

tape # 1 1 0 0 + 1 0 1 1 # … … tape 
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0 
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# : 1 

1 : 0 

0 : 1 

+ : # 

# : # 

1 : # 

Turing Machine:  States 

State.  What machine remembers. 
State transition diagram.  Complete description of what machine will do. 

if in state 3 and tape head is 0:

 •  write a  1

 •  go to state 2

 •  move tape head right


# 1 1 0 0 + 1 0 1 1 # … … tape 
(before) 
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State.  What machine remembers. 
State transition diagram.  Complete description of what machine will do. 
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Turing Machine:  States 

# 1 1 0 0 + 1 0 1 1 # … … tape 
(after) 

1 0 

R 
2 

if in state 3 and tape head is 0:

 •  write a  1

 •  go to state 2

 •  move tape head right
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Binary Adder 

# 1 0 1 0 + 1 1 1 1 # … 

L L 1 : 0 

R L 

# : # + : + R H 

0 : 1 

# : 1 
find right end of y
 add one to x


subtract one from y
 find plus sign


1 : 0 

0 : 1 

… 

x
 y


+ : # 

# : # 

halt
clean up


1 : # 
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Turing Machine:  Initialization and Termination 

Initialization.  Set input on some portion of tape; set tape head. 

Termination.  Stop if enter  yes, no, or halt state. 

infinite loop possible 

tape head 

# 1 0 1 0 + 1 1 1 1 # … … tape 

Program and Data 
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Program and Data 

Data.  Sequence of symbols (interpreted one way). 
Program.  Sequence of symbols (interpreted another way). 

Ex 1.  A compiler is a program that takes a program in one language 
as input and outputs a program in another language. 

Java 

machine language 
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Program and Data 

Data.  Sequence of symbols (interpreted one way). 
Program.  Sequence of symbols (interpreted another way). 

Ex 2.  Self-replication.  [von Neumann 1940s] 

Print the following statement twice, the second time in quotes. 
"Print the following statement twice, the second time in quotes." 
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Program and Data 

Data.  Sequence of symbols (interpreted one way). 
Program.  Sequence of symbols (interpreted another way). 

Ex 3.  Self-replication.  [Watson-Crick 1953] 

self-replicating DNA
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Data.  Sequence of symbols (interpreted one way). 
Program.  Sequence of symbols (interpreted another way). 

Ex 4.  Turing machine. 

% more adder.tur  
vertices 
2 R 
0 L 
1 L 
3 L 
4 R 
5 H 

edges 
0 0 0 1 
0 1 1 0 
0 4 + # 
1 3 + + 
2 0 # # 
3 2 # 1 
3 2 0 1 
3 3 1 0 
4 4 1 # 
4 5 # # 

tape 
[1] 0 1 0 + 1 1 1 1 

graphical representation


Program and Data 

text representation


L L 1:0 

R L 

#:# +:+ R H 

0:1 

#:1 

1:0 

0:1 

+:# 

#:# 

1:# 

# 1 0 1 0 + 1 1 1 1 # … … 

7.5  Universality 
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Universal Machines and Technologies 

iPod
iMac
 Printer
Dell PC


Xbox
 Tivo
 Turing machine
 TOY
 Java language


MS Excel
 Python language
Blackberry
 Quantum computer
 DNA computer


Diebold voting machine
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Universal Turing Machine 

Turing machine M.  Given input tape x, Turing machine M outputs M(x). 

TM intuition.  Software program that solves one particular problem. 

M
x
 M(x)


… # 0 1 1 # … 

data x
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Universal Turing Machine 

Turing machine M.  Given input tape x, Turing machine M outputs M(x). 

Universal Turing machine U. Given input tape with x and M, 
universal Turing machine U outputs M(x). 

TM intuition.  Software program that solves one particular problem. 
UTM intuition.  Hardware platform that can implement any algorithm. 

U

M

x


M(x)
M
x
 M(x)


… # 0 1 1 # … … # 0 1 1 # 1 0 1 1 # … 

data x
 data x
 program M
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Universal Turing Machine 

Consequences.   Your laptop (a UTM) can do any computational task. 
  Java programming.  
  Pictures, music, movies, games. 
  Email, browsing, downloading files, telephony. 
  Word-processing, finance, scientific computing. 
  … 

even tasks not yet contemplated 
when laptop was purchased 

Wenger Giant Swiss Army Knife 
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Universal Turing Machine 

Consequences.   Your laptop (a UTM) can do any computational task. 
  Java programming.  
  Pictures, music, movies, games. 
  Email, browsing, downloading files, telephony. 
  Word-processing, finance, scientific computing. 
  … 

“ Again, it [the Analytical Engine] might act upon other things besides�
   numbers… the engine might compose elaborate and scientific pieces of�
   music of any degree of complexity or extent. ” — Ada Lovelace


even tasks not yet contemplated 
when laptop was purchased 
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Church-Turing Thesis 

Remark.  "Thesis" and not a mathematical theorem because it's a
 statement about the physical world and not subject to proof.  

Implications. 
  No need to seek more powerful machines or languages. 
  Enables rigorous study of computation (in this universe). 

Bottom line.  Turing machine is a simple and universal model of computation. 

Church Turing thesis (1936).  Turing machines can do anything that can
 be described by any physically harnessable process of this universe. 

but can be falsified 
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Church-Turing Thesis:  Evidence 

Evidence. 
  7 decades without a counterexample. 
  Many, many models of computation that turned out to be equivalent. 

"universal" 

model of computation description 

enhanced Turing machines multiple heads, multiple tapes, 2D tape, nondeterminism 

untyped lambda calculus method to define and manipulate functions 

recursive functions functions dealing with computation on integers 

unrestricted grammars iterative string replacement rules used by linguists 

extended L-systems parallel string replacement rules that model plant growth 

programming languages Java, C, C++, Perl, Python, PHP, Lisp, PostScript, Excel 

random access machines registers plus main memory, e.g., TOY, Pentium 

cellular automata cells which change state based on local interactions 

quantum computer compute using superposition of quantum states 

DNA computer compute using biological operations on DNA 
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Lindenmayer Systems:  Synthetic Plants 

http://astronomy.swin.edu.au/~pbourke/modelling/plants 
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Cellular Automata:  Synthetic Zoo 

Reference:  Generating textures on arbitrary surfaces using reaction-diffusion by Greg Turk, SIGGRAPH, 1991. 

History:  The chemical basis of morphogenesis by Alan Turing, 1952. 



7.6  Computability 
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Halting Problem 

Halting problem.  Write a Java function that reads in a Java function f  
and its input x, and decides whether f(x) results in an infinite loop. 

Ex.  Does f(x) terminate? 

  f(6):    6 3 10 5 16 8 4 2 1 

  f(27):   27 82 41 124 62 31 94 47 142 71 214 107 322 … 4 2 1 

  f(-17):  -17 -50 -25 -74 -37 -110 -55 -164 -82 -41 -122 …  -17 … 

public void f(int x) { 
   while (x != 1) { 
      if  (x % 2 == 0) x = x / 2;  
      else(x % 2 == 0) x = 3*x + 1; 
   } 
} 

relates to famous open math conjecture 
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Undecidable Problem 

A yes-no problem is undecidable if no Turing machine exists to solve it. 

Proof intuition:  lying paradox. 
  Divide all statements into two categories:  truths and lies. 
  How do we classify the statement: I am lying.  

Key element of lying paradox and halting proof:  self-reference. 

Theorem.  [Turing 1937]   The halting problem is undecidable. 

and (by universality) no Java program either 
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Halting Problem Proof 

Assume the existence of halt(f,x): 
  Input:  a function f and its input x. 
  Output:  true if f(x) halts, and false otherwise. 

Note.  halt(f,x) does not go into infinite loop. 

We prove by contradiction that halt(f,x) does not exist. 
  Reductio ad absurdum :  if any logical argument based on an

 assumption leads to an absurd statement, then assumption is false. 

public boolean halt(String f, String x) { 
   if ( something terribly clever ) return true; 
   else                    return false; 
} 

encode f and x as strings 

hypothetical halting function
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Halting Problem Proof 

Assume the existence of halt(f,x): 
  Input:  a function f and its input x. 
  Output:  true if f(x) halts, and false otherwise. 

Construct function strange(f) as follows: 
  If halt(f,f) returns true, then strange(f) goes into an infinite loop.  
  If halt(f,f) returns false, then strange(f) halts. 

f is a string so legal (if perverse) 
to use for second input 

public void strange(String f) { 
   if (halt(f, f)) { 
      // an infinite loop 
      while (true) { } 
   } 
} 
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Halting Problem Proof 

Assume the existence of halt(f,x): 
  Input:  a function f and its input x. 
  Output:  true if f(x) halts, and false otherwise. 

Construct function strange(f) as follows: 
  If halt(f,f) returns true, then strange(f) goes into an infinite loop.  
  If halt(f,f) returns false, then strange(f) halts. 

In other words: 
  If f(f) halts, then strange(f) goes into an infinite loop. 
  If f(f) does not halt, then strange(f) halts. 
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Halting Problem Proof 

Assume the existence of halt(f,x): 
  Input:  a function f and its input x. 
  Output:  true if f(x) halts, and false otherwise. 

Construct function strange(f) as follows: 
  If halt(f,f) returns true, then strange(f) goes into an infinite loop.  
  If halt(f,f) returns false, then strange(f) halts. 

In other words: 
  If f(f) halts, then strange(f) goes into an infinite loop. 
  If f(f) does not halt, then strange(f) halts. 

Call strange()with ITSELF as input. 
  If strange(strange) halts then strange(strange) does not halt. 
  If strange(strange) does not halt then strange(strange) halts. 
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Halting Problem Proof 

Assume the existence of halt(f,x): 
  Input:  a function f and its input x. 
  Output:  true if f(x) halts, and false otherwise. 

Construct function strange(f) as follows: 
  If halt(f,f) returns true, then strange(f) goes into an infinite loop.  
  If halt(f,f) returns false, then strange(f) halts. 

In other words: 
  If f(f) halts, then strange(f) goes into an infinite loop. 
  If f(f) does not halt, then strange(f) halts. 

Call strange()with ITSELF as input. 
  If strange(strange) halts then strange(strange) does not halt. 
  If strange(strange) does not halt then strange(strange) halts. 

Either way, a contradiction.  Hence halt(f,x) cannot exist.   
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Consequences 

Q.  Why is debugging hard? 
A.  All problems below are undecidable.  

Halting problem.  Give a function f, does it halt on a given input x? 
Totality problem.  Give a function f, does it halt on every input x? 
No-input halting problem.  Give a function f with no input, does it halt? 
Program equivalence.  Do two functions f and always return same value? 
Uninitialized variables.  Is the variable x initialized before it's used? 
Dead-code elimination.  Does this statement ever get executed? 
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More Undecidable Problems 

Hilbert's 10th problem. 

  f (x, y, z) = 6x3 y z2 + 3xy2 - x3 – 10. 
yes :  f (5, 3, 0) = 0.

  f (x, y) = x2 + y2 – 3. 
 
 no.


Definite integration.  Given a rational function f (x) composed of
 polynomial and trig functions, does                 exist? 

  g(x) = cos x (1 + x2) -1 
 
  yes, 

  h(x) = cos x (1 - x2) -1 
 
 no,                         undefined.


Devise a process according to which it can be determined by
 a finite number of operations whether a given multivariate
 polynomial has an integral root. — David Hilbert


€ 

f (x)dx−∞
+∞∫

€ 

g(x)dx  =  π /e.−∞
+∞∫

€ 

h(x)dx−∞
+∞∫
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More Undecidable Problems 

Optimal data compression.  Find the shortest program to produce a
 given string or picture. 

Mandelbrot set (40 lines of code)
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More Undecidable Problems 

Virus identification.  Is this program a virus? 

Private Sub AutoOpen() 
On Error Resume Next  
If System.PrivateProfileString("", CURRENT_USER\Software\Microsoft\Office\9.0\Word\Security", 
                               "Level") <> "" Then 

CommandBars("Macro").Controls("Security...").Enabled = False 
. . . 
For oo = 1 To AddyBook.AddressEntries.Count 
   Peep = AddyBook.AddressEntries(x) 
   BreakUmOffASlice.Recipients.Add Peep 
   x = x + 1 
   If x > 50 Then oo = AddyBook.AddressEntries.Count 
Next oo 
. . . 
BreakUmOffASlice.Subject = "Important Message From " & Application.UserName 
BreakUmOffASlice.Body = "Here is that document you asked for ... don't show anyone else ;-)" 
. . . 

Melissa virus�
March 28, 1999


Can write programs in MS Word. 
This statement disables security. 
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Context:  Mathematics and Logic 

Mathematics.  Any formal system powerful enough to express arithmetic.  

Complete.  Can prove truth or falsity of any arithmetic statement. 
Consistent.  Can't prove contradictions like 2 + 2 = 5. 
Decidable.  Algorithm exists to determine truth of every statement. 

Q.  [Hilbert, 1900]  Is mathematics complete and consistent? 
A.  [Gödel's Incompleteness Theorem, 1931]  No!!! 

Q.  [Hilbert's Entscheidungsproblem]  Is mathematics decidable? 
A.  [Church 1936, Turing 1936]  No!  

Principia Mathematics 
Peano arithmetic 
Zermelo-Fraenkel set theory 
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Turing's Key Ideas 

Turing machine.  
formal model of computation

Program and data.  
encode program and data as sequence of symbols


Universality. 
concept of general-purpose, programmable computers


Church-Turing thesis. 
computable at all == computable with a Turing machine


Computability. 
inherent limits to computation


Hailed as one of top 10 science papers of 20th century. 
Reference:  On Computable Numbers, With an Application to the Entscheidungsproblem by A. M. Turing. 
In Proceedings of the London Mathematical Society, ser. 2. vol. 42 (1936-7), pp.230-265. 
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Alan Turing (left) 
Elder brother (right) 

Alan Turing 

Alan Turing (1912-1954). 
  Father of computer science. 
  Computer science's "Nobel Prize" is called the Turing Award. 

It was not only a matter of abstract mathematics, not only a play
 of symbols, for it involved thinking about what people did in the
 physical world….  It was a play of imagination like that of
 Einstein or von Neumann, doubting the axioms rather than
 measuring effects…. What he had done was to combine such a
 naïve mechanistic picture of the mind with the precise logic of
 pure mathematics.  His machines – soon to be called Turing
 machines – offered a bridge, a connection between abstract
 symbols, and the physical world.   —  John Hodges



