2.1 Functions

INTRODUCTION TO

Programming

MWEVE!

Robert Sedgewick Kevin Wayne

ion to F inJava: An Interdi: Approach - Robert Sedgewick and Kevin Wayne - Copyright © 2008 - February 18,2010 3:39 PM

A Foundation for Programming

any program you might want to write

objects
. build bigger programs
functions and modules T andreuse code
graphics, sound, and image I/0
arrays
conditionals and loops
Math text I/0

primitive data types assignment statements

2.1 Functions

y — f —— @y
Z —_—

Functions (Static Methods)

Java function.

« Takes zero or more input arguments.

= Returns one output value.

. Side effects (e.g., output to standard draw). —— meregeneral than
Applications.

« Scientists use mathematical functions to calculate formulas.

= Programmers use functions to build modular programs.

= You use functions for both.

Examples.
« Built-in functions: Math.random(),Math.abs (), Integer.parselnt ().
« Our I/O libraries: stdin.readInt (), StdDraw.line(), StdAudio.play().
« User-defined functions: main().

Anatomy of a Java Function

Java functions. Easy to write your own.

input output
2.0 — fx)=Vx ———— 1.414213..
signature return method —argument argument
type name type variable

AN

‘pub11c static [doublel[sqrt] ([doubTe gﬂﬂ

{
‘if (c < 0) return Double.NaN;

local —___[double err|= le-15;
variables ~_'
double t|= c;

method__~|while [(Math.abs(t - c/t)| > err * t)

body t=(c/t + v /2.0
return t;
} call on another method

return statement

Flow of Control

Key point. Functions provide a new way to control the flow of execution.

What happens when a function is called:
= Control transfers to the function code.
= Argument variables are assighed the values given in the call.
« Function code is executed.
= Return value is assigned in place of the function name in calling code.
= Control transfers back to the calling code.

public class Newton
public static double sqrt(double c)
{
if (c < 0) return Double.NaN;
double err = le-15;
double t = c;
while (Math.abs(t - c/t) > err * t)
t © /2.0

return t;

public static void main(String[] args)

int N = args.length;
double[] a = new double[N];

Note. This is known as "pass by value."

for (int i =0; i < N; i+
a[i] = Double.parseDouble(args[il);
for (int i =0; i i)

double x =(sqrt(alil);

Stdout.printin(Q;

’ |

scope of another

Flow of Control

Key point. Functions provide a new way fo control the flow of execution.

_J

public class Newton
public static double sqrt(double c)

if (c < 0) return Double.NaN;

double err = le-15;

double t = c;

while (Math.abs(t - c/t) > err * t)
t=(c/t+1t) /2.0

return t;

—

public static void main(String[] args)

int N = args.length;
double[] a = new double[N];
for (int i = 0; i < N; i++)
a[i] = Double.parseDouble(args[il);
for (int i = 0; i < N; i++)

double x =(sgrt@lil);———

3
StdOut.printin(x);

SRR 3

Scope

Scope (of a hame). The code that can refer to that name.
Ex. A variable's scope is code following the declaration in the block.

public class Newton {
public static double sqgrt(double c) {
double err = le-15; «—— scope of ¢

if (¢ < 0) return Double.NaN; «— scope of epsilon

double t = c;

while (Math.abs(t - c/t) > err * t) +—— scopeof t

t=(c/t +t) / 2.0;
return t;

}

public static void main(String[] args) {
double[] a = new double[args.length];
for (int i = 0; i < args.length; i++)
a[i] = Double.parseDouble (args[i]) ;
for (int i = 0; i < a.length; i++) {
double x = sqrt(a[i]);
Stdout.println(x) ;

scopeof i —F—*

«—— scope of a
variablei ~———

}

Best practice: declare variables to limit their scope.

Function Challenge la Function Challenge 1b

Q. What happens when you compile and run the following code? Q. What happens when you compile and run the following code?

Function Challenge 1c Function Challenge 1d

Q. What happens when you compile and run the following code? Q. What happens when you compile and run the following code?

Function Challenge le

Q. What happens when you compile and run the following code?

public class Cubes5 {

public static int cube (int i) {
return i * i * i;

}

public static void main(String[] args) {
int N = Integer.parselnt(args[0]) ;
for (int i = 1; i <= N; i++)
StdOut.println(i + " " + cube(i)) ;

Gaussian Distribution

Standard Gaussian distribution.
= "Bell curve."
= Basis of most statistical analysis in social and physical sciences.

Ex. 2000 SAT scores follow a Gaussian distribution with
mean un = 1019, stddev o = 209.

03 04
02 03 04

02

0.1

601 810 1019 1228 1437

¢(x)=ﬁ e p(x,u,0) = vy

Gaussian Distribution

Java Function for ¢(x)

Mathematical functions. Use built-in functions when possible;
build your own when not available.
.) 1 -x2/2
public class Gaussian { ¢(x)=ﬁ e

public static double phi (double x) {
return Math.exp(-x*x / 2) / Math.sqrt(2 * Math.PI);
}

public static double phi(double x, double mu, double sigma) {

return phi((x - mu) / sigma) / sigma;

) ! p(x. o) = ¢(H) /o

Overloading. Functions with different signatures are different.
Multiple arguments. Functions can take any number of arguments.
Calling other functions. Functions can call other functions.

library or user-defined

Gaussian Cumulative Distribution Function

Goal. Compute Gaussian cdf ©(z).

Challenge. No "closed form" expression and not in Java library.

-x2/2

03 04

/ P =k e
2y @ A4
s ,,Q:,O:
AEEEY]
° -3 -2 / 1; 1 2 3
z

Bottom line. 1,000 years of mathematical formulas at your fingertips.

SAT Scores

Q. NCAA requires at least 820 for Division I athletes.
What fraction of test takers in 2000 do not qualify?

A. ®(820, 1019, 209) =~ 0.17051. [approximately 17%]

hava N

X

2
havs

A
R

&

K
(e
&R

bat

601 810“019 1228 1437

820

Java function for ®(z)

Oz, w, 0) = [, ¢(z,u,0) = ©((z-p) / 0)

Gaussian Distribution

. Why relevant in mathematics?
. Central limit theorem: under very general conditions, average of
a set of random variables tends to the Gaussian distribution.

>0

. Why relevant in the sciences?

. Models a wide range of natural phenomena and random processes.
« Weights of humans, heights of trees in a forest.

= SAT scores, investment returns.

>0

Caveat.

Building Functions

Functions enable you to build a hew layer of abstraction.
= Takes you beyond pre-packaged libraries.
= You build the tools you need: Gaussian.phi(), ..

Process.

= Step 1 identify a useful feature.

= Step 2: implement it.
« Step 3: useit.

= Step 3': re-use it in any of your programs.

Crash Course in Sound

Sound. Perception of the vibration of molecules in our eardrums.

Concert A. Sine wave, scaled to oscillate at 440Hz.
Other notes. 12 notes on chromatic scale, divided logarithmically.

note i frequency
1 4 6 9 11
A 0 440.00
A¢ or B 1 466.16
B 2 493.88
C 3 523.25
C¢ or Db 4 554,37
D 5 587.33
D¢ or E» 6 622.25
E 7 659.26
02 3 5 7 81012 F 8 698.46
J F¢ or G0 9 739.99
EENRPEES G 10 783.99
e — G# or Av 11 830.61
A 12 880.00

N

440x 2112

Notes, numbers, and waves

AVAVAVAVAVAVAVAVAN
AVAVAVAVAVAVAVAVAVA

\VAVAVAVAVAVAN
AVAVAVAVAVAVAVAVAVAVA
AVAVAVAVAVAVAVAVAVAVAV,
AVAVAVAVAVAVAVAVAVAVAVAN
AVAVAVAVAVAVAVAVAVAVAVAVA
AVAVAVAVAVAVAVAVAVAVAVAVAVS
AVAVAVAVA AVAVAVAVAVAV
AVAVAVAVAVAVAVAVAVAVAVAVAVAVAN
NVVVVVVVVVVV VN
NNNVVVVVVVAVNANNN
AVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVA

21

Digital Audio

Digital Audio

Sampling. Represent curve by sampling it at regular intervals.

audio €D

5,512 samples/second, 137 samples

11,025 samples/second, 275 samples

44,100 samples/second, 1,102 samples
AMNANNNANANANND

Musical Tone Function Digital Audio in Java

Musical tone. Create a music tone of a given frequency and duration. Standard audio. Library for playing digital audio.

public class StdAudio

void play(String file)

void play(doubTle x)
void save(String file, double[] a)
void double[] read(String file)

play the given .wav file

play sample for 1/44100 second
save to a .wav file

read from a .wav file

Concert A. Play concert A for 1.5 seconds using stdaudio.

Remark. Can use arrays as function return value and/or argument.

25 26

Harmonics

Harmonics

Concert A with harmonics. Obtain richer sound by adding tones
one octave above and below concert A.

AN N
880 Hz 220 Hz 440 Hz

To = tone(220, .0041);
To[44] = .982

hi = tone(880, .0041);
hi[44] = -.693

44— N A h = sunChi, To, .5, .5);
_/-\ h[44] = .5%1o[44]+.5%hi[44];
= .5%.982 - .5%.693 = .144

374 7 A = tone(440, .0041);
N4 A[44] = .374

29 ’ \/\ sum(A, h, .5

A[44] + h[44]

.55
.5%.144 + .5%.374
.259

44

27

Harmonics

Play that tfune. Read in pitches and durations from standard input,
and play using standard audio.

public static void main(String[] args) {
while (!StdIn.isEmpty()) {

int pitch = StdIn.readInt() ;

double duration = StdIn.readDouble() ;

double[] a = note(pitch, duration) ;
StdAudio.play(a) ;

more elise.txt

%

7 .125
6 .125
7 .125
6 .125
7 .125
2 .125
5 .125
3 .125
0 .25

2.2

% java PlayThatTune < elise.txt

[M =——— ———

Libraries and Clients

J

f public class PlayThatTune

{ N \ \
public static double[] sum(double[] a, double[] b,
double awt, double bwt)

double[] ¢ = new double[a.length];
for (int i = 0; i < a.length; i++)

cli] = alil*awt + b[i]*bwt;
return c;

public static double[] tone(double hz, double t)
{

int sps = 44100;
int N = (int) (sps * t);
double[] a = new double[N+1];
for Gint i =05 1 <= N; i++)
a[i] = Math.sin(2 * Math.PI * i * hz / sps);

return a;

7
public static double[] note(int pitch, double t)
{
double hz = 440.0 * Math.pow(2, pitch / 12.0);
double[] a =(tone(hz, ©);

doublel] i :

INTRODUCTION TO

Programming

in Java

An Interdisciplinary Approach

Robert Sedgewick Kevin Wayne

10 Prog

g in Java: An Inte

- Robert Sedgewick and Kevin Wayne

ciplinary Approach - Copyright © 2008 -

February 18,2010 3:40 PM

\ return(sum(a, h, .5, .5);

double[] 1o =m—J
\ doublel] h - @nChT, To, 5.5

%

while (!StdIn.isEmpty())
{

public static void main(String[] args)

int pitch = StdIn.readInt();

double duration = StdIn.readDouble(); }
k double[] a =(note(pitch, duration);

M
StdAudio.play(a);

Libraries

Library. A module whose methods are primarily intended for use

by many other programs.

Client. Program that calls a library.

API. Contract between client and
implementation.

Implementation. Program that
implements the methods in an APT.

client
Gaussian.Phi(1019)

calls methods
API
public class Gaussian

double phi(double x) d(x)
double Phi(double z) ®(z)

.

defines signatures
and describes methods

U?I[?[A’HZA’/HLIH(WI
public class Gaussian

public static double phi(double x)

public static double Phi(double z)

~

Java code that
implements methods

Random Numbers

Jon von Neumann (left), ENIAC (right)

Standard Random

Standard Random

Standard random. Our library to generate pseudo-random numbers.

public class StdRandom

int
doubTe
booTlean
double
double
int
void

uniform(int N) integer between 0 and N-1
uniform(double To, double hi) real between 10 and hi
bernoul1i(double p) true with probability p
gaussian() normal, mean 0, standard deviation 1

gaussian(double m, double s) normal meanm, standard deviation s
discrete(double[] a) i with probability a[1]
shuffle(double[] a) randomly shuffle the array a[]

int getRondomNumber ()

return Y, // chosen by fair dice roll.
// quaranteed to be random.

Unit Testing

Unit test. Include main() to test each library.

Using a Library

Statistics

Standard Statistics Standard Statistics

Ex. Library to compute statistics on an array of real numbers. Ex. Library to compute statistics on an array of real numbers.

public class StdStats

double max(double[] a) largest value

double min(double[] a) smallest value

double mean(double[] a) average

double var(double[] a) sample variance

double stddev(double[] a) sample standard deviation
double median(double[] a) median

void plotPoints(double[] a) plotpointsat (i,a[i])
void plotLines(double[] a) plot lines connecting points at (i, a[i1)
void plotBars(double[] a) plot bars to points at (i, a[i])

gttt tan o, (a0 —p)* + (a1 = p)® + -+ (@n-1 — p)?
n ’ B n—1

mean sample variance

Modular Programming

Bernoulli Trials

Modular Programming

Modular programming.

«» Divide program into self-contained pieces.
» Test each piece individually.

= Combine pieces to make program.

Ex. Flip N coins. How many heads?

= Read arguments from user.

« Flip one fair coin.

« Flip N fair coins and count number of heads.

« Repeat simulation, counting number of times each outcome occurs.
« Plot histogram of empirical results.
» Compare with theoretical predictions.

% java Bernoulli 20 100000

Dependency Graph

Modular programming. Build relatively complicated program by
combining several small, independent, modules.

Bernoulli

parseInt() parseInt(

discrete()

readDoublelD()
readDoub1e2D()

StdArrayIO

readDouble ()
readInt()

point()

StdStats StdRandom

setPenRadius ()
setXscale()
TineQ)

Libraries

Why use libraries?
= Makes code easier to understand.
= Makes code easier to debug.

= Makes code easier to maintain and improve.

= Makes code easier to reuse.

