
Finite State Machines
(FSMs) and RAMs and

inner workings of CPUs
COS 116, Spring 2010
Guest: Szymon Rusinkiewicz

Recap

•  Combinational logic circuits: no cycles, hence no “memory”

•  Sequential circuits: cycles allowed; can have memory
 as well as “undefined”/ambiguous behavior

•  Clocked sequential circuits: Contain D flip flops whose
“Write” input is controlled by a clock signal

R-S Flip-Flop
(corrected slide)

S
R

M

Forbidden to
turn on both
Set and Reset
simultaneously
(value is
“ambiguous”)

Recap: D Flip Flop

Basic Memory Block – stores 1 bit.

D

W

M

If we “toggle” the write
input (setting it 1 then
setting it 0) then M
acquires the value of D.

“Timing Diagram”
5V

0V
Time

D

5V

0V
Time

W

5V

0V
Time

M

D

W
M

Finite State Machines (FSMs)

  Finite number of states
  Machine can produce outputs, these depend upon

current state only
  Machine can accept one or more bits of input; reading

these causes transitions among states.

Closed Open

Detected Person

No
Person

Detected
Detected Person

No Person Detected

“Automatic Door”

Discussion
Time

How can we implement a FSM using logic gates etc.?

• If number of states = 2k then represent “state” by
 k boolean variables.

• Identify number of input variables

•  Write truth table expressing how “next state”
is determined from “current state” and current values
of the input.
• Express as clocked synchronous circuit.

What are some examples of FSMs?

Example: 4-state machine; 1 bit of input; No output

State variables: P, Q
Input variable: D

Next value of P = (P + Q) • D
Next value of Q = P

What is its state diagram?

Implementation: General Schematic

Inputs

Circuit to
compute
next state

Flip flops
(memory
elements)

Circuit to
compute
outputs

CLK

K Flip flops allow FSM to have 2K states

Implementing door FSM as synchronous
circuit

INPUT

STATE

0 = No Person Detected
1 = Person Detected

0 = Door Closed
1 = Open

Input Present State Next State
0 0 0
1 0 1
0 1 0
1 1 1

Implementation of door FSM (contd)

D

W

M

INPUT

CLOCK

0 = No Person Detected
1 = Person Detected

0 = Door Closed
1 = Open

STATE

Next….

Random Access Memory (RAM)

Memory where each location has an address

Recall from last lecture:
“Register” with 4 bits of memory

How can you
set up an
addressing
system for
large banks of
memory?

RAM

RAM

2K bits;
bank of
flipflops

K Address
Bits

Data

Write

RAM K Address
Bits

Data

Read

If 4 locations, “address” has 2 bits

Address

Clock

To RAM’s
“Clock” input

RAM: Implementing “Write”

RAM Decoder
(Demux)

Data
The decoder selects
which cell in the RAM
gets its “Write” input
toggled

K-bit address
(in binary)

Clock
(simple combinational
circuit; see logic handout)

Ram: implementing “Read”

RAM Multiplexer
Data The multiplexer is

connected to all cells in
the RAM; selects the
appropriate cell based
upon the k-bit address

K-bit address
(in binary)

(simple combinational
circuit; see logic handout)

Next, the secret revealed...

How computers execute programs.

CPU = Central Processing Unit

Scribbler Control
Panel Program Machine

Executable Code

F5

“Download to
Robot”

(Compilation)

• T-P programs represented
in binary
•  .exe files in the Wintel
world

Similar to:
Point 1: Programs are “translated”
into “machine language”; this is
what’s get executed.

Greatly simplified view
of modern CPUs. Program (in binary)

stored in memory

Memory Registers
Arithmetic and

Logic Unit
(ALU)

Control FSM

Lots of Custom Hardware Instruction Pointer

RAM

Examples of Machine Language Instructions

 ADD 3 7
12

Add contents of Register
3 and Register 7 and
store in Register 12

JUMP 4 35876 If register 4 has a
number > 0 set IP to

35876

LOAD 3 67432 Read Location 67432
from memory and load

into Register 3

Stored in binary (recall Davis’s binary encoding of T-P programs)

Different CPUs have different
machine languages

  Intel Pentium, Core, Xeon, etc. (PC, recent Mac)
  Power PC (old Mac)
  ARM (cellphones, mobile devices, etc.)

“Backwards Compatibility” – Core 2’s machine language
extends Pentium’s machine language

Machine languages now allow complicated calculations
(eg for multimedia, graphics) in a single instruction

Main Insight

Computer = FSM controlling
a larger (or infinite) memory.

Meet the little green man…

The Fetch – Decode – Execute FSM

Execute

Decode

Fetch

Fetch – Decode – Execute FSM

“Fetch” IP IP + 1

Decode Execute

Go to next
instruction

CPU as a conductor of a symphony
Network Card CPU Sound Card

CD-ROM Video Card

“BUS”
e.g., PCI

Bus: “Everybody hears everybody else”

How an FSM does “reasoning”

 “If left infrared sensor detects
a person, turn left”

L = 0

L = 1 T =1

T= 0

Speculation: Brain as FSM?

•  Network (“graph”) of 100 billion neurons; each
connected to a few thousand others
•  Neuron = tiny Computational Element;
 “switching time” 0.01 s
•  Neuron generates a voltage spike depending
upon how many neighbors are spiking.

