Finite State Machines

(FSMs) and RAMs and

inner workings of CPUs

COS 116, Spring 2010
Guest: Szymon Rusinkiewicz

Recap

« Combinational logic circuits: no cycles, hence no “memory”
« Sequential circuits: cycles allowed; can have memory
as well as “undefined’/ambiguous behavior

 Clocked sequential circuits: Contain D flip flops whose
“Write” input is controlled by a clock signal

R-S Flip-Flop S — — M

(corrected slide) R~

Reset DC
AND

M becomes 1 1f Set 1s turned on
M becomes 0 1f Reset 1s turned on

Otherwise (1f both are 0), M just remembers its value

Forbidden to
turn on both
Set and Reset
simultaneously
(value is
“ambiguous”)

" I
Recap: D Flip Flop

Basic Memory Block — stores 1 bit.

D If we “toggle” the write
input (setting it 1 then
setting it 0) then M

W acquires the value of D.

“Timing Diagram”
SV
D
oV
oV
W
oV

Time

Time

" A
Finite State Machines (FSMs)

Detected Person “Automatic Door

EHODICY
Detected

Detected Person

7

No Person Detected

m Finite number of states
m Machine can produce outputs, these depend upon
current state only

m Machine can accept one or more bits of input; reading
these causes transitions among states.

| | Discussion
Time

%, 4) 3
D e
o\ — .}b;_, :;u A

What are some examples of FSMs?

How can we implement a FSM using logic gates etc.?

*[f number of states = 2 then represent “state” by
K boolean variables.

Ildentify number of input variables

« Write truth table expressing how “next state”

IS determined from “current state” and current values
of the input.

*Express as clocked synchronous circuit.

Example: 4-state machine; 1 bit of input; No output

State variables: P, Q
Input variable: D

Next value of P=(P+ Q) D
Next value of Q = P

What is its state diagram?

Implementation: General Schematic

Flip flops
(memory
elements)

Circuit to
compute
outputs

Circuit to
compute
next state

CLK—l

Inputs

K Flip flops allow FSM to have 2K states

" J
Implementing door FSM as synchronous

circuit

0 = No Person Detected
1 = Person Detected

O = Door Closed
1 = Open

No Person
Detorted ﬂcted Ph

Detected Person

No Person Detected

Input | Present State | Next State
0 0 0

0 1
1 0
1 1

_ O |-

Implementation of door FSM (contd)

0 = No Person Detected | |\pyT
1 = Person Detected

STATE

0 = Door Closed
1 = Open

Next....

Random Access Memory (RAM)

Memory where each location has an address

Recall from last lecture:

"Register” with 4 bits of memory

Write

Data,

Data,

Data,

Data,

D

W

Y

W

W

M

M

M

M

How can you
set up an
addressing
system for
large banks of
memory?

Data

K Address

2K bits
bank of
flipflops

K Address

If 4 locations, “address” has 2 bits

A
Address { B

o

o
No-

Clock —

o

Sjejs]e

ouT,

ouT,

ouT,

oty

> ToRAM's

“Clock” input

RAM: Implementing “Write”

Data/

Clock

K-bit address
(in binary)

RAM

The decoder selects
which cell in the RAM
gets its “Write” input
toggled

(simple combinational
circuit; see logic handout)

Ram: implementing “Read”

D
et

\ | Multiplexer

K-bit address
(in binary)

RAM

The multiplexer is
connected to all cells in
the RAM: selects the
appropriate cell based
upon the k-bit address

(simple combinational
circuit; see logic handout)

Next, the secret revealed...

How computers execute programs.

CPU = Central Processing Unit

Scribbler Control
Panel Program

Machine
Executable Code

i* Funduc Software Hex Editor - [t1.gif]
Q File Edit Yiew Bookmarks Window Help

i <Obstacle on Either Side> Then F5 NEE K
i

000000 7 49 46 38 39 61 14 00 Of
Play Sound for 1s at Frequency 440Hz

' 000009 00 b3 08 00 ££ 60 00 cf 60
} 000012 00 cf 2f 00 cf 60 2f ££f 90

Else 00001k 2f 90 2f 00 60 2f 00 f£ff 60
{ cc 000024 2f £f £f ££f 00 00 00 0O OO
LED: ON, ON, ON Download tO pDo002d 00 00 OO OO0 0O 00 OO 00 0O
000036 00 00 OO0 00 00 00 00 21 ££

}END RObOt” DO003f Ob 4e 45 54 53 43 41 50 45

000048 32 Ze 30 03 01 0D 00 DO 21
000051 £9 04 09 14 00 08 00 2Zc 0O

0000Sa 00 00 00 14 00 Of 00 00 04

(Compilation) DD0063 55 10 ©9 49 ab 9d 26 eb 9d

00006c 'af 19 44 28 8e 81 51 19 42

Similar to:
Eoint 1: Pr_ograms are “tran§lqted” -T-P programs represented
into “machine language’; this is in binary

what’s get executed. « .exe files in the Wintel
world

Greatly simplified view
Program (in binary) Of mOdern CPUS

stored in memory

RAM

Memory Registers

Arithmetic and
Logic Unit
(ALU)

7 Control FSM

Instruction Pointer I @f Custom Ha@

Examples of Machine Language Instructions

ADD 3 7 | Add contents of Register
12 3 and Register 7 and
store in Register 12

LOAD 3 67432 Read Location 67432
from memory and load
into Register 3

JUMP 4 35876 If register 4 has a

number > 0 set IP to
35876

Stored in binary (recall Davis’s binary encoding of T-P programs)

"
Different CPUs have different
machine languages

m Intel Pentium, Core, Xeon, etc. (PC, recent Mac)
m Power PC (old Mac)

m ARM (cellphones, mobile devices, etc.)

“Backwards Compatibility” — Core 2’s machine language
extends Pentium’s machine language

Machine languages now allow complicated calculations
(eg for multimedia, graphics) in a single instruction

Main Insight

Computer = FSM controlling
a larger (or infinite) memory.

" S
-
Meet the little green man.._xl

The Fetch — Decode — Execute FSM

/

Go to next

X) ~ Instruction

"
CPU as a conductor of a symphony

Network Card @ Sound Card

“BUS”
e.g., PCI

@ Video Card

Bus: "Everybody hears everybody else”

How an FSM does “reasoning’

“If left infrared sensor detects
a person, turn left’

" A
Speculation: Brain as FSM?

* Network (“graph”) of 100 billion neurons; each

connected to a few thousand others

* Neuron = tiny Computational Element;
“switching time” 0.01 s

* Neuron generates a voltage spike depending

upon how many neighbors are spiking.

