
COS 116  
 The Computational Universe  

Laboratory 10: Computer Graphics 
______________________________________________________________________________ 
 
 
As mentioned in lecture, computer graphics has four major parts: imaging, rendering, modeling, 
and animation. In this lab you will learn about rendering and modeling. You will make use of 
two well-known programs: Google’s SketchUp, a free 3D modeling tool, and POV-Ray, an open 
source raytracing renderer. You will also learn about OpenGL, the rendering software used by 
SketchUp and games such as World of Warcraft. 
 
If you get stuck at any point, feel free to discuss the problem with another student or a TA. 
However, you are not allowed to copy another student’s answers. 
 
Hand in your lab report at the beginning of lecture on Tuesday, April 27. Include responses 
to questions printed in bold (number them by Experiment and Step), as well as the 
Additional Questions at the end.  
  
Before you begin:  
  

1)  You’ll need to download povview_extract.exe from the course website: 
 
http://www.cs.princeton.edu/courses/archive/spring08/cos116/lab10_files/povview_extract.exe 
 
Once you have it on your desktop, double click it to run and then accept the default extraction 
folder, which is the povview folder on your Desktop. 

 
2)  Make sure your display color setting is set to Highest (32-bit color). The Friend 007 

laptops should already be set to this.  To check, right click anywhere on the desktop and 
choose ‘NVIDIA Control Panel’.  Using the ‘Standard View’, select the ‘Display’ 
category, then select ‘Change resolution attributes’ under ‘Appearance’.  Check that 
‘Color Quality’ is set to ‘Highest (32-bit color)’. 

 
 



Warm Up: The Povview viewer 
 
Povview is a small graphical program written by the course staff which acts as a wrapper around 
POV-Ray. You will use it to set up simple scenes for raytracing. 
 

1. Open povview.exe in the povview folder on your Desktop. 
2. Select File->Open and choose bedroom.kmz. 
3. After a few seconds, you should see a simple scene with a desk, chair, and set of 

bunkbeds. 
 

The main window of Povview is a 3D camera view that can be manipulated with the mouse. 
Click and drag the left mouse button to rotate the camera. Click and drag the middle button to 
pan (move from side to side) the camera. Click and drag the right button to zoom the camera 
in and out of the screen. 

 
4. The bedroom scene contains three incongruous (poorly) hidden objects. Find all three by 

moving the camera using the mouse as described above. 
5. When you have found an object, try to frame it nicely in the view. Then press Ctrl+S to 

take screenshot. Choose Save as type: Windows Bitmap. Save the file to something 
you will remember (just accept the defaults in the second ‘Image Settings’ dialog box).  

6. Include a nicely framed shot of each object in your lab report.  
 
 
 
 
 



Experiment 2: Selecting Objects and Changing Pigments 
 
Let’s try to color our objects something other than gray. 
 

1. Open the file three_obj.kmz. 
2. Double click on the cylinder. A yellow outline appears around the cylinder and a sidebar 

appears with several new options.  
3. Click the button in the upper right of the sidebar, next to the word “Pigment.” A dialog 

box appears that allows you to choose a color for the cylinder. Choose a red color and 
click OK. 

4. The cylinder should become red, and you should notice that the values in the 
Red/Green/Blue edit boxes have changed. 

 
The simplest way to represent a pigment is as a triplet of red, green, and blue (RGB) color 
values. The RGB values describe how much red, green, or blue light is reflected by a 
pigment. Traditionally, these values lie in the range 0.0 (no light reflected) to 1.0 (all light 
reflected). In Povview, you can change the color of an object by either changing these edit 
boxes, or by picking a color from the color dialog. 
 
5. Using the same procedure, make one of the boxes green and the other one blue. 
6. Now, try to match the colors in the following image. Write down the associated red, 

green, and blue values for each object in your notes. 
 

 
 

 
 
 
 
 
 
 



Experiment 3: Working with Lights 
 
Povview has two lighting environments. One is meant to simulate outdoor light with a single, 
very distant light source (the Sun), while the other is meant to simulate an indoor situation with 
several nearby point light sources. 
 

1. Select View->Show Lights. You should see a white line extending upwards from the 
center of your scene. This line represents the direction of the sun, and its color represents 
the color of the sun’s light. 

2. Double click on the white line (you may have to be somewhat precise). A new sidebar 
will appear giving you some options to change the light. 

3. The position of the sun can be adjusted by moving the position slider. Try sliding it back 
and forth from sunrise to sunset.  

4. Recall from lecture that a common lighting hack is an Ambient term that controls the 
general level of brightness in the scene. Try adjusting the Ambient Power to see its effect. 

5. You can change the color of the sun much as you changed the color of the objects. What 
color will each of the three objects appear if you change the sun’s color to red? To 
blue? To green? Write down your predictions in your notes, and then try each color 
to see if you were right. 

6. Try the indoor lighting environment: choose Lighting->Indoor. You will see four point 
lights instead of the long sun line. 

7. You can select the point lights in the same way as everything else. Try changing the color 
of each light individually: make one or two green, blue, or red.  

8. Were you surprised by any of these results? Do the results seem realistic? Why or 
why not? 

 
 
 



Experiment 4: Triangulation 
 
As explained in class, 3D models are often constructed from a set of triangular pieces. This 
experiment explores this type of model, often called a triangle mesh.  

 
1. Each rectangular box in your scene of three objects is a made up of eight vertices (the 

corners) and triangles connecting the vertices. Assume the triangles can only connect the 
eight corners of a box. How many triangles make up a box? 

2. Turn on wireframe rendering by selecting View->Wireframe. Check your calculation by 
counting the number of triangles you see in each box. Also, look at how many triangles 
the “cylinder” contains!  

3. This configuration is only one way of triangulating the objects. How many unique 
triangulations of a box with eight vertices exist (ignore symmetry)? 

4. Open icos.ply. You should see an icosahedron, which is a shape with 20 triangular 
sides.  

 
A triangle mesh can perfectly represent a cube with only a small number of triangles. Curved 
shapes, however, are more difficult to represent – remember how many triangles the cylinder 
used. A sphere is another shape that can only be approximated by a triangle mesh. One way 
to approximate a sphere is by subdividing a roughly spherical mesh such as an icosahedron. 
 
5. Select the icosahedron by double-clicking it, and then choose Model->Subdivide. Look at 

the result in wireframe mode. How many triangles does the new shape have? Hint: 
don’t count all the triangles – figure out what happened to each of the icosahedron’s 
sides, then multiply that number by 20. It may help to reload icos.ply and subdivide 
over again. 

6. Subdivide the shape again. How many triangles does the doubly subdivided shape 
have? If you subdivided an icosahedron n times, how many triangles would the 
resulting shape have? 

7. How many times do you have to subdivide the icosahedron before the mesh looks 
like a sphere? How many triangles does the almost spherical mesh have? Warning: 
the program may start getting slow if you subdivide too many times.  

 
 
 



Experiment 5: Finishes 
 
You may have noticed that the sidebar has a bunch of other options besides pigment coloring. 
Lets see what the Finish box does.  
 

1. Select your subdivided icosahedron (approximated sphere) and turn off wireframe mode. 
You should see a nice, smooth, soft gray shape. 

2. Change the Specular edit box to 0.0. The sphere should become slightly duller: this is 
pure diffuse lighting.  

3. Move the camera around the sphere. Does the color of a given point on the sphere 
change when you move the camera? Turn on Lighting->Outdoor and View->Show 
Lights. Move the sun around as in experiment 3. Does the color of a given point change 
when you move the light? Describe qualitatively the effects that you see. 

4. Change the Diffuse edit box to 0.0. The sphere should become a flat, gray circle. This is 
pure ambient lighting.  

5. Move the camera and the sun around again. Does the color of the sphere change as you 
move the camera? How about the light? 

6. Select the sphere again and increase the Specular value to 1.0. You should see a bright, 
white highlight on the sphere. This highlight is an example of a simulated specular 
reflection. It is meant to depict the bright, mirror like reflection of light off of the sphere.  

7. Move the camera around again. Does the highlight move when you move the camera? 
Move the sun again. Does the highlight move when you move the sun? 

8. The last finish parameter is Roughness. Set the Diffuse and Specular boxes to reasonable 
values, say 0.5 and 0.5. Now try changing the Roughness value by clicking the up and 
down arrows next to its edit box. 

9. How does the shape of the specular highlight change as you change the Roughness? 
Does higher or lower Roughness look “rougher” to you? 

 
 
 
 
 



Experiment 6: Surfaces 
 
In this experiment we will start using POV-Ray. So far you have been viewing models using a 
renderer based on OpenGL. OpenGL is a rasterizing renderer, which basically means that it 
looks at each triangle, projects that 3D triangle into the 2D screen (much as your 3D body 
projects a 2D shadow on the ground), and then draws that whole 2D triangle in one shot. By 
comparison, POV-Ray is a raytracing renderer. A raytracer does not directly process each 
triangle; instead, it shoots virtual rays of light into the scene and computes where each ray hits a 
triangle. Raytracing is much more computationally intensive than rasterizing, as you will see. 
However, raytracing makes modeling some complex lighting effects easier. One of these effects 
is called bump-mapping.  
 
Important:  To render an image using POV-Ray from povview, 
 

1) Go to ‘File-> Preview POV-Ray Scene…’ 
2) Click ‘Save As…’ to save the scene as a .pov file into the default ‘povview’ directory. 
3) To run POV-Ray, first open the ‘povview’ folder on your Desktop, then navigate to 

‘povray’ then to ‘bin’.  Double click on ‘pvengine.exe’ to start the program. 
4) In POV-Ray, click ‘Open’ and select the .pov file you saved in the ‘povview’ directory. 
5) To render, hit ‘Run’. 
6) POV-Ray automatically saves the rendered scene as a .bmp image in the ‘povview’ 

directory with the same name as the .pov file. 
 

Note:  Don’t use the povview ‘File->Render (Ctrl-R)’ function or ‘Render in POV-Ray’ 
button.  They don’t work properly on the Friend 007 laptops.  Also, POV-Ray can be 
slow to render. The time taken by POV-Ray is directly proportional to the size of the 
Povview window: if you shrink the Povview window prior to rendering in POV-Ray, you 
will get a smaller output image but faster rendering times. 

 
 
1. You should still have your smooth, subdivided and somewhat shiny sphere up on the 

screen. Render the sphere in POV-Ray using the directions above.  
2. You should now have an open Render Window with an image of sphere in it. Compare 

it to the OpenGL version: do they look similar? Different? 
3. Close the Render Window and select the sphere again in Povview. Click “Bumpy” in the 

Surface box. You will see no effect on the shape in the OpenGL rendering.  
4. Now, render the sphere again and compare the two images again. What changed?  
5. The Surface box has two parameters, Height and Scale. Height controls how tall the 

bumps appear to be, while Scale controls their width. Try playing around with a few 
different values for each and re-rendering the sphere in POV-Ray. 

6. Bump mapping is a cheat: it makes the surface look bumpy, but it doesn’t actually make 
the geometry of the shape bumpy. Can you find part of the output image where the 
bump mapping illusion breaks down? 

7. Using everything you have learned so far, try to make your sphere look like an orange. 
You won’t be able to make a perfect orange, obviously, but you should be able to make 
something like the example image. Include the image of your orange (automatically 
saved by POV-Ray as a .bmp image) in your notes. Record the Pigment, Finish, and 
Surface parameters as well.  

 



Experiment 7: Shadows and Reflections 
 
Recall from lecture that there are in general two ways of simulating illumination: Direct 
Illumination and Global Illumination. OpenGL uses only direct illumination, while POV-Ray 
can simulate global illumination (at least, some parts of it). This experiment will make the 
difference obvious. 
 

1. You should still have your orange up on the screen. Choose View->Show Ground to turn 
on a simple ground plane.  

2. Render the scene in POV-Ray. You should see the orange casting a shadow onto the 
ground.  

3. Close the output window. Select Lighting->Outdoor and View->Show Lights (if not 
already selected). Select the sun and move it around a bit. Render the scene again. Did 
the shadow move? Is the shadow in about the place you expect it, given the location 
of the sun? 

4. Turn on indoor lighting with Lighting->Indoor and render again. How many shadows do 
you see now? Is this what you expect? 

5. Even the POV-Ray shadow calculation is only an approximation of a real shadow. Can 
you describe some ways in which the shadows do not look realistic? Hint: try placing 
your hand right on your desk and look at the shadow it makes. Then, raise your hand 
about four inches off the desk and look again. 

6. Select the ground plane by doubling clicking on it. Set its Specular value to 0.5. Again, 
you should see little or no change in the OpenGL viewer. 

7. Render the scene in POV-Ray again. You should now see the orange casting a reflection 
in the ground. Try setting different values of Specular and Diffuse for the ground plane. 
For what values does the reflection look strongest? Weakest? 

8. Part of the fun of using a raytracer is setting up interesting reflections. Try this: Open 
sphere_stack.kmz. You will see a small pyramid of five spheres on a plane (you 
will need to turn on View->Show Ground Plane again). Change the color of each sphere 
to something distinctive, and change the Specular value of the ground plane to around 
0.5. Render the scene in POV-Ray. How many separate reflections can you see 
(approximately)? 



Experiment 8: SketchUp Modeling 
 
So far you have been using 3D models that have been provided for you. You can also create 
models yourself. SketchUp is a free 3D modeling tool that allows you to create 3D models and 
export them to Povview for rendering. SketchUp is a complicated program that takes some time 
to learn, so you should only attempt this part of the lab if you have plenty of time. You can also 
download SketchUp at home and play with it there. 
 

1. Load SketchUp from the Start menu. Try running through one of the tutorials in the help 
section to get your feet wet. 

2. Once you have made a simple model, you can export it using File->Export->3D Model. 
Make sure you select “Google Earth 4” as the export format. Put the file on the desktop 
or somewhere where you can find it easily.  

3. Load up Povview and open your file (it should be called <something>.kmz). From 
here, you should be able to do everything as you have been so far. 

4. The separate objects that you select in Povview correspond to Groups in SketchUp. Try 
this: make a scene with two boxes. Select each box with the selection tool, then right 
click on each box and choose Make Group. Export the model and load it in Povview. You 
should now be able to select each box separately and change its color. 

5. SketchUp also has an extensive library of 3D models premade for you. Choose File->Get 
Models and browse around. Try to make an interesting scene and render it in 
Povview.  

 
 
Extra Credit: 
 
Now that you have some familiarity with SketchUp and POV-Ray, you can create some pretty 
cool images. If you have any time left over, try playing around with bedroom.kmz or another 
interesting scene that you have created. POV-Ray has many more advanced features than we 
have touched on here. You can use File->Preview POV-Ray Scene to see what the raw input to 
POV-Ray looks like. If you are feeling adventurous, read up on the POV-Ray documentation and 
try to apply some of those features using the Preview text editor. Some interesting things to try 
include the fish-eye projection, fog, and radiosity.  
 
Some helpful links: 
 
POV-Ray documentation: http://www.povray.org/documentation/ 
Examples of advanced use of POV-Ray: http://hof.povray.org/ 
Google Sketchup: http://sketchup.google.com/product_suf.html 
 


