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1. INTRODUCTION

In finite mixture models, we know a priori the numberK of clusters exist-
ing in the data. Each data point is generated by one ofK distributions, each
of which is characterized by some parameters. For example, we can cluster
the data using K-means or Gaussian mixture models. These approaches are
widely used in machine learning and statistics, and are applied in areas such
as image processing, information retrieval and gene expression analysis. A
fundamental question that naturally arises is how to do model selection, i.e.,
how can we choose right number of clusters.

Bayesian nonparametrics provides a form of model selectionand a flex-
ible model. Nonparametric does not mean that there are no parameters. It
simply means that the number of parameters in the model can grow as we
get more data. This allows our model the flexibility to be as complex as our
data needs. The Dirichlet process introduced by Ferguson 1973 and Anto-
niak 1974 provides such machinery to letK grow with the data. The data
analysis usually relies on MCMC to obtain an estimate of parameters in the
model.

2. CHINESE RESTAURANT PROCESS

There are many ways of looking at the Dirichlet process. We start by
examining the Chinese restaurant process (CRP) representation and see its
connection with the Dirichlet process. The Chinese restaurant process is
a distribution of partitions of integers, which is introduced by Pitman and
Dubins. SupposeN customers arrive at a restaurant with infinite capacity
sequentially. Denoteni as the number of customers already sitting in table
i. Each incoming customer chooses a table at random, with probability that

(1)

{

p(tablei|previous customers) ∝ ni

p(next empty table|previous customers) ∝ α

whereα is a parameter that is invariable during the process. Note that a new
customer can either sit at an existing table, or can start a new table. Figure
1 illustrates an example of the Chinese restaurant process,in which each
customer is numbered by his arrival sequence.
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FIGURE 1. An Example of the Chinese Restaurant Process

The Chinese restaurant process is a representation of partition of integers
{1, 2, . . . , N}. For example, in Figure 1, 10 numbers are partitioned into
four groups(1, 3, 4, 8), (2, 5, 10), (6) and(7, 9). The partition is free of or-
ders, i.e., we can renumber the tables to produce the same partition. The
expected number of tables taken byN customers is

(2) E[# of tables] = α log N

In CRP mixture model, each data point is generated as follows. Each ta-
ble corresponds to a cluster, which is associated with a parameter drawn
from a prior p(η∗|λ). For each customer, we first choose a tableZ ∼
CRP(α). Then we draw a value fromp(x|η∗

z), e.g., a prior over Gaussian
locations. Such a process is illustrated in Figure 2. The generative process
is similar to mixture models, but with unbounded number of mixture com-
ponents. Note that an outlier in the data can be thought of as anew cluster.
So the the emphasis of CRP is not on the actual number of clusters.

Given data{x1, . . . , xN}, the posterior is a distribution on
• number of clusters (number of occupied tables)
• which data are assigned to each cluster
• parameterη∗

z of each cluster
Generally, the number of clusters is random and unknown, andnew data
can be assigned to a new cluster. Our goal is to estimate this posterior dis-
tribution. The CRP mixture model is well studied in statistics, e.g., Escobar
and West 1994, Neal 2001, Gelfand and Kottas 2002. It is widely used in
many application such as spatial statistics, computer vision and censored
models.

There are several useful extensions of CRP developed in machine learn-
ing. One famous example is nested CRP, which is shown in Figure 3. In
nested CRP, there can be infinite levels of CRPs recursively defined. For
example, at the top level, each table is associated with a CRPparametered
by η∗. Customers on a table can be further clustered into smaller tables,
and this process can continue infinitely. With nested CRP, what you finally
construct is a random tree. This is exactly the powerful expressiveness of
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FIGURE 2. Generative process of CRP mixtures

FIGURE 3. Nested CRP

nested CRP. CRP is a simple distribution over partition, while nested CRP
is a distribution over tree, with which one can search over complicated com-
binatorial structures. One example of such application is to classify the key
words of computer science journal articles into hierarchical structures, such
as a tree shown in Figure 4. Each node on the same depth represents the
key words of a branch area, and this branch can be further classified into
sub areas.

3. THE STICK-BREAKING CONSTRUCTION

An alternative perspective on the DP is one based on the stick-breaking
construction due to Sethuraman [1]. The representation foraG ∼ DP(α0, G0)
is constructed from an infinite sequence of iid random variablesπ′

k andφ′

k

wherek = 1 . . .∞,

π′

k | α0 ∼ beta(1, α0)

φk | G0 ∼ G0.(3)
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FIGURE 4. Analyzing key words of computer science jour-
nal articles using nested CRP

The actual measureG is then derived from the random variables as fol-
lows

πk =
k−1
∏

l=1

(1 − π′

l)

G =
∞

∑

k=1

πkδφk
,(4)

whereδφk
is a probability measure concentrated atφk and

∑

∞

k=1
πk = 1. It

can be seen from this construction thatπ is a random probability measure
on positive integers, and measures drawn from DP are discrete with prob-
ability 1. Figure 5 is a prictorial representation of a unit stict constructed
according to the stick-breaking procedure. Probabilty measureπ defined
by Equation 4 is also refered to asπ ∼ GEM(α0).

The sitck-breaking construction can be useful in definig more complex
models, such as the Hierarchical Didirchlet Process (HDP) [2]. The HDP
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FIGURE 5. A unit length stick representation,
∑

∞

k=1
πk = 1.

construction can also be represented in the stick-breakinginterpretations as

β ∼ GEM(γ)

θ∗∗i ∼ H

G0 =
∞

∑

i=1

βiδ(θ
∗∗

i )

πj ∼ GEM(α)

θ∗ji ∼ G0

Gj =

∞
∑

i=1

πjiδ(θ
∗

ji) .(5)

BecauseG0 has support at the pointsθ∗∗i , Gj has support at these points as
well, and therefore can also be written as

(6) Gj =
∞

∑

i=1

ωjiδ(θ
∗∗

i ) .

SinceGj ∼ DP(α, G0), then for a measurable partition(A1, . . . , Ar) of Θ

(7) (Gj(A1), . . . , Gj(Ar)) ∼ Dir(αG0(A1), . . . , αG0(Ar))

Therefore, if forl = 1, . . . , r let Il = {i : θ∗∗i ∈ Al}

(8)

(

∑

i∈I1

ωji, . . . ,
∑

i∈Ir

ωji

)

∼ Dir

(

α
∑

i∈I1

βi, . . . , α
∑

i∈Ir

βi

)

Hence,ωj ∼ DP(α, β).
The random probability measureωj is also produced with the stick-breaking

construction

ω′

ji ∼ beta

(

αβi, α

(

1 −
i

∑

l=1

βl

))

ωji = ω′

ji

i−1
∏

l=1

(1 − ω′

jl) ,(9)

and also by

(10) ωji ∼ beta(αβi, α(1 − βi)) .
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To arrive at Eq. 10 and Eq. 9, note that for partition(1, . . . , i − 1, i, i + 1, i + 2, . . .)
by Eq. 8

(11)

( i−1
∑

l=1

ωjl, ωji,

∞
∑

l=i+1

ωjl

)

∼ Dir

(

α

i−1
∑

l=1

βl, αβi, α

∞
∑

l=i+1

βl

)

Eq. 10 follows by standard properties of Dirichlet distribution. Also by
standard properties of Dirichlet distribution,

(12)

(

ωji

1 −
∑i−1

l=1
ωjl

,

∑

∞

l=i+1
ωjl

1 −
∑i−1

l=1
ωjl

)

∼ Dir

(

αβi, α

∞
∑

l=i+1

βl

)

.

Then defining,

(13) ω′

ji =
ωji

1 −
∑i−1

l=1
ωjl

,

and therefore,

(14) ωji = ω′

ji

i−1
∏

l=1

(1 − ω′

jl) .

Together with

(15) 1 −
i

∑

l=1

βl =
∞

∑

l=i+1

βl

arrive at Eq. 9.
The concentration parametersγ, α and the baseline probability measure

H are the hyperparameters of an HDP. For small values ofγ, the mass is
concentrated on a few atoms ofH, as the value ofγ increases, mass shifts
away to be more spread out. This can be observed on the top row of figure 6
with draws for different values ofγ. Similarly, for small values ofα, mass
is concentrated on few atoms ofG0, and as it increases the mass is less
concentrated and more spread out. Since the distribution ofG0 is govern by
the parameterγ, the parameterα can be interpreted as a refinement of the
concentration onH set byγ. This can be seen in figure 6 with draws ofω

for different values ofα given a particular draw ofβ.
To formulate the HDP mixture model in the stick-breaking representa-

tion, letθji be the factors corresponding to a single observationxij , and let
:

θji ∼ Gj

xji ∼ F (θji)

whereF (θji) denotes the distribution of the observationxji.
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FIGURE 6. Random draws forβ andγ. The top row shows
9 draws forβ for γ of 0.4, 1.2 and3.6. Below each draw of
β, 4 draws forω are shown given the draw ofβ.
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