Congestion Control
Reading: Sections 6.1-6.4

COS 461: Computer Networks
Spring 2009 (MW 1:30-2:50 in CS 105)

Mike Freedman

Teaching Assistants: Wyatt Lloyd and Jeff Terrace
http://www.cs.princeton.edu/courses/archive/spring09/cos461/

Course Announcements

e Second programming assignment is posted
— Web proxy server

— Due Sunday March 8 at 11:59pm
— More challenging than the first assignment

* Good to get started on the next assighment

— To go to office hours early if you encounter problems

Goals of Today’s Lecture

Congestion in IP networks
— Unavoidable due to best-effort service model

— IP philosophy: decentralized control at end hosts
Congestion control by the TCP senders

— Infers congestion is occurring (e.g., from packet losses)
— Slows down to alleviate congestion, for the greater good
TCP congestion-control algorithm

— Additive-increase, multiplicative-decrease

— Slow start and slow-start restart
Active Queue Management (AQM)

— Random Early Detection (RED)
— Explicit Congestion Notification (ECN)

No Problem Under Circuit Switching

e Source establishes connection to destination
— Nodes reserve resources for the connection
— Circuit rejected if the resources aren’t available
— Cannot have more than the network can handle

|IP Best-Effort Design Philosophy

e Best-effort delivery
— Let everybody send
— Network tries to deliver what it can
—...and just drop the rest

source destination

IP network -

=

Congestion is Unavoidable

* Two packets arrive at the same time
— The node can only transmit one
— ... and either buffer or drop the other
* |f many packets arrive in short period of time

— The node cannot keep up with the arriving traffic
— ... and the buffer may eventually overflow

—>

The Problem of Congestion

* What is congestion?

— Load is higher than capacity

e What do IP routers do?
— Drop the excess packets

 Why is this bad?
— Wasted bandwidth for retransmissions

Goodput

A

“congestion
collapse”

Load

Increase in load that
results in a decrease in
useful work done.

Ways to Deal With Congestion

lgnore the problem

— Many dropped (and retransmitted) packets
— Can cause congestion collapse
Reservations, like in circuit switching

— Pre-arrange bandwidth allocations

— Requires negotiation before sending packets

Pricing
— Don’t drop packets for the high-bidders
— Requires a payment model

Dynamic adjustment (TCP)
— Every sender infers the level of congestion
— Each adapts its sending rate “for the greater good”

Many Important Questions

How does the sender know there is congestion?
— Explicit feedback from the network?
— Inference based on network performance?

How should the sender adapt?

— Explicit sending rate computed by the network?
— End host coordinates with other hosts?
— End host thinks globally but acts locally?

What is the performance objective?
— Maximizing goodput, even if some users suffer more?
— Fairness? (Whatever the heck that means!)

How fast should new TCP senders send?

Inferring From Implicit Feedback

e What does the end host see?

 What can the end host change?

10

Where Congestion Happens: Links

* Simple resource allocation: FIFO queue & drop-tail

e Access to the bandwidth: first-in first-out queue

— Packets transmitted in the order they arrive

-

B

>

e Access to the buffer space: drop-tail queuing

— If the queue is full, drop the incoming packet

>

How it Looks to the End Host

* Packet delay
— Packet experiences high delay

* Packet loss
— Packet gets dropped along the way

e How does TCP sender learn this?

— Delay
* Round-trip time estimate

— Loss

* Timeout
* Duplicate acknowledgments

What Can the End Host Do?

* Upon detecting congestion (well, packet loss)
— Decrease the sending rate
— End host does its part to alleviate the congestion

e But, what if conditions change?
— Suppose there is more bandwidth available
— Would be a shame to stay at a low sending rate

* Upon not detecting congestion
— Increase the sending rate, a little at a time
— And see if the packets are successfully delivered

TCP Congestion Window

 Each TCP sender maintains a congestion window
— Maximum number of bytes to have in transit
— |.e., number of bytes still awaiting acknowledgments

e Adapting the congestion window
— Decrease upon losing a packet: backing off
— Increase upon success: optimistically exploring
— Always struggling to find the right transfer rate

 Both good and bad

— Pro: avoids having explicit feedback from network
— Con: under-shooting and over-shooting the rate

Additive Increase, Multiplicative Decrease
(AIMD)

* How much to increase and decrease?
— Increase linearly, decrease multiplicatively
— A necessary condition for stability of TCP

— Consequences of over-sized window are much worse
than having an under-sized window

e Over-sized window: packets dropped and retransmitted
* Under-sized window: somewhat lower throughput

 Multiplicative decrease
— On loss of packet, divide congestion window in half

* Additive increase
— On success for last window of data, increase linearly

Leads to the TCP “Sawtooth”

Window

Loss

////

Practical Details

* Congestion window
— Represented in bytes, not in packets (Why?)
— Packets have MSS (Maximum Segment Size) bytes

* |ncreasing the congestion window

— Increase by MSS on success for last window of data

* Decreasing the congestion window

— Never drop congestion window below 1 MSS

Receiver Window vs. Congestion Window

* Flow control
— Keep a fast sender from overwhelming a slow receiver
e Congestion control

— Keep a set of senders from overloading the network

* Different concepts, but similar mechanisms
— TCP flow control: receiver window
— TCP congestion control: congestion window
— TCP window: min { congestion window, receiver window }

How Should a New Flow Start

Need to start with a small CWND to avoid overloading the network.

Window

kér

A

But, could take a long
time to get started!

{

19

“Slow Start” Phase

e Start with a small congestion window
— Initially, CWND is 1 Max Segment Size (MSS)
— So, initial sending rate is MSS/RTT

* That could be pretty wasteful

— Might be much less than the actual bandwidth
— Linear increase takes a long time to accelerate

* Slow-start phase (really “fast start”)
— Sender starts at a slow rate (hence the name)
— ... but increases the rate exponentially
— ... until the first loss event

Slow Start in Action

Double CWND per round-trip time

Src [0 [T [0 0 =0 ----

/ \o’o

Slow Start and the TCP Sawtooth

Window
Loss
™
~
Exponential “slow {

start”
Why is it called slow-start? Because TCP originally had

no congestion control mechanism. The source would just

start by sending a whole receiver window’s worth of data.

Two Kinds of Loss in TCP

* Timeout
— Packet n is lost and detected via a timeout
— E.g., because all packets in flight were lost
— After the timeout, blasting away for the entire CWND
— ... would trigger a very large burst in traffic
— So, better to start over with a low CWND

* Triple duplicate ACK
— Packet n is lost, but packets n+1, n+2, etc. arrive
— Receiver sends duplicate acknowledgments
— ... and the sender retransmits packet n quickly
— Do a multiplicative decrease and keep going

Repeating Slow Start After Timeout

Window
' timeout

/

vz

Slow start in operation
until it reaches half of
previous cwnd.

Slow-start restart: Go back to CWND of 1, but take
advantage of knowing the previous value of CWND.

Repeating Slow Start After Idle Period

Suppose a TCP connection goes idle for a while
— E.g., Telnet session where you don’t type for an hour
Eventually, the network conditions change

— Maybe many more flows are traversing the link
— E.g., maybe everybody has come back from lunch!

Dangerous to start transmitting at the old rate
— Previously-idle TCP sender might blast the network
— ... causing excessive congestion and packet loss

So, some TCP implementations repeat slow start
— Slow-start restart after an idle period

TCP Achieves Some Notion of Fairness

e Effective utilization is not the only goal
— We also want to be fair to the various flows

— ... but what the heck does that mean?

* Simple definition: equal shares of the bandwidth

— N flows that each get 1/N of the bandwidth?

— But, what if the flows traverse different paths?
— E.g., bandwidth shared in proportion to the RTT

a

!

>

/

S

What About Cheating?

* Some folks are more fair than others
— Running multiple TCP connections in parallel
— Modifying the TCP implementation in the OS
— Use the User Datagram Protocol

 What is the impact

— Good guys slow down to make room for you
— You get an unfair share of the bandwidth

* Possible solutions?
— Routers detect cheating and drop excess packets?

— Peer pressure?
— 7?77

Queuing Mechanisms

Random Early Detection (RED)
Explicit Congestion Notification (ECN)

Bursty Loss From Drop-Tail Queuing

 TCP depends on packet loss
— Packet loss is the indication of congestion

— In fact, TCP drives the network into packet loss
— ... by continuing to increase the sending rate
* Drop-tail queuing leads to bursty loss

— When a link becomes congested...
— ... many arriving packets encounter a full queue

— And, as a result, many flows divide sending rate in half
— ... and, many individual flows lose multiple packets

—>

Slow Feedback from Drop Tail

* Feedback comes when buffer is completely full
— ... even though the buffer has been filling for a while
* Plus, the filling buffer is increasing RTT
— ... and the variance in the RTT
 Might be better to give early feedback

— Get 1-2 connections to slow down, not all of them
— Get these connections to slow down before it is too late

l[——>

Random Early Detection (RED)

e Basicidea of RED
— Router notices that the queue is getting backlogged
— ... and randomly drops packets to signal congestion

* Packet drop probability

— Drop probability increases as queue length increases
— |If buffer is below some level, don’t drop anything
— ... otherwise, set drop probability as function of queue

Probability

Average Queue Length

Properties of RED

Drops packets before queue is full
— In the hope of reducing the rates of some flows

Drops packet in proportion to each flow’s rate
— High-rate flows have more packets

— ... and, hence, a higher chance of being selected
Drops are spaced out in time

— Which should help desynchronize the TCP senders
Tolerant of burstiness in the traffic

— By basing the decisions on average queue length

Problems With RED

Hard to get the tunable parameters just right
— How early to start dropping packets?

— What slope for the increase in drop probability?

— What time scale for averaging the queue length?
Sometimes RED helps but sometimes not

— If the parameters aren’t set right, RED doesn’t help
— And it is hard to know how to set the parameters

RED is implemented in practice
— But, often not used due to the challenges of tuning right

Many variations in the research community
— With cute names like “Blue” and “FRED”... ©

Explicit Congestion Notification

e Early dropping of packets
— Good: gives early feedback
— Bad: has to drop the packet to give the feedback

e Explicit Congestion Notification
— Router marks the packet with an ECN bit
— ... and sending host interprets as a sign of congestion

* Surmounting the challenges
— Must be supported by the end hosts and the routers

— Requires 2 bits in the IP header for detection (forward dir)
* One for ECN mark; one to indicate ECN capability
* Solution: borrow 2 of Type-Of-Service bits in IPv4 header

— Also 2 bits in TCP header for signaling sender (reverse dir)

Other TCP Mechanisms

Nagle’s Algorithm and Delayed ACK

Motivation for Nagle’s Algorithm

Interactive applications

— Telnet and rlogin

— Generate many small packets (e.g., keystrokes)
Small packets are wasteful

— Mostly header (e.g., 40 bytes of header, 1 of data)

Appealing to reduce the number of packets

— Could force every packet to have some minimum size

— ... but, what if the person doesn’t type more characters?
Need to balance competing trade-offs

— Send larger packets
— ... but don’t introduce much delay by waiting

Nagle’s Algorithm

Wait if the amount of data is small

— Smaller than Maximum Segment Size (MSS)

And some other packet is already in flight

— |l.e., still awaiting the ACKs for previous packets
That is, send at most one small packet per RTT

— ... by waiting until all outstanding ACKs have arrived
ACK

Bl BN v Il I N

Influence on performance
— Interactive applications: enables batching of bytes
— Bulk transfer: transmits in MSS-sized packets anyway

Nagle’s Algorithm

* Wait if the amount of data is small
— Smaller than Maximum Segment Size (MSS)
 And some other packet is already in flight

Turning Nagle Off

void
tcp nodelay (int s)
{

int n = 1;

if (setsockopt (s, IPPROTO TCP, TCP_ NODELAY,
(char *) &n, sizeof (n)) < 0)
warn ("TCP_NODELAY: 2%m\n");

Motivation for Delayed ACK

e TCP traffic is often bidirectional
— Data traveling in both directions
— ACKs traveling in both directions

* ACK packets have high overhead

— 40 bytes for the IP header and TCP header
— ... and zero data traffic

* Piggybacking is appealing
— Host B can send an ACK to host A
— ... as part of a data packet from B to A

TCP Header Allows Piggybacking

Source port Destination port
Sequence number
Flags: EI\I(\IN Acknowledgment
RST HdrLen| o | Flags | Advertised window
Egé Checksum Urgent pointer
ACK

Options (variable)

Example of Piggybacking

B has data to send

B doesn’t have data to send

A has data to send D

Increasing Likelihood of Piggybacking

 Example: rlogin or telnet
— Host A types characters at prompt A B

. D
— Host B receives the character and ata
executes a command CK
Data’\’A
— ... and then data are generated S
— Would be nice if B could send the Day,
ACK with the new data C ’y
= e
* |ncrease piggybacking %
— TCP allows the receiver to wait to
send the ACK

— ... in the hope that the host will
have data to send

Delayed ACK

* Delay sending an ACK

— Upon receiving a packet, the host B sets a timer
* Typically, 200 msec or 500 msec

— If B’s application generates data, go ahead and send
* And piggyback the ACK bit

— If the timer expires, send a (non-piggybacked) ACK

* Limiting the wait
— Timer of 200 msec or 500 msec
— ACK every other full-sized packet

Conclusions

Congestion is inevitable
— Internet does not reserve resources in advance
— TCP actively tries to push the envelope

Congestion can be handled

— Additive increase, multiplicative decrease
— Slow start, and slow-start restart

Active Queue Management can help
— Random Early Detection (RED)

— Explicit Congestion Notification (ECN)
Fundamental tensions

— Feedback from the network?
— Enforcement of “TCP friendly” behavior?

