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Pairwise Competition and the Replicator Equation
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Spite in Hamilton’s sense is defined asthe willingness to harm oneself in order
to harm another more. The standard replicator dynamic predicts that evolutionar-
ily stable strategies are payoff-maximizing equilibria of the underlying game, and
hence rules out the evolution of spiteful behavior. We propose a modified replicator
dynamic, where selection is based on local outcomes, rather than on the population
‘state’, as in standard models. We show that under this new model spite can evolve
readily. The new dynamic suggests conditions under which spite in animals might
be found.

c© 2003 Society for Mathematical Biology. Published by Elsevier Ltd. All rights
reserved.

1. INTRODUCTION

Hamilton (1970) asked, ‘. . . would we ever expect an animal to be ready to harm
itself in order to harm another more?’. Such behavior has become accepted as
the informal definition of spite, but the problem of whether spiteful behavior in
animals exists, or evencan exist under evolutionary pressure, has had a contro-
versial history, often involving definitional issues, and is far from resolved (Foster
et al., 2001). The most restrictive form of spite, and perhaps the most difficult to
explain, isindiscriminate spite, where behavior is assumed to be oblivious to relat-
edness of rivals. AfterVerner(1977) argued that territoriality provided empirical
evidence for such spite in birds,Rothstein (1979), andKnowlton and Parker(1979)
concluded from specialized mathematical models that indiscriminate spite can be
supported only to a small extent, and only for small populations. In this paper we
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re-examine the behavioral foundation of spite, propose a revised dynamic model
for its evolution, and show how this dynamic can easily give rise to the selection
of what would ordinarily be viewed as spiteful behavior. The selection dynamic
we study applies to human as well as animal behavior, and to cultural as well as
biological evolution.

Gadagkar(1993) points out that, ‘Conventional wisdom has it that to be spiteful
is the prerogative of humans alone’. He goes on to suggest, however, that, given the
ambiguous nature of examples proposed so far, a more detailed examination of the
issue may lead to greater understanding of animal evolution in general, even if the
ultimate conclusion is that such apparently paradoxical behavior is actually selfish.
Our model thus represents one additional step in this research program—offering
theoretical underpinnings to suggest where indiscriminate spite might be expected
to flourish.

Apart from explaining spite in animals, there is also the problem of explaining
apparently spiteful behavior inHomo sapiens. We examined this question within
the narrow context of equilibrium behavior in auctions elsewhere (Morganet al.,
2003). In the present paper we seek to extend some of these findings to dynamic
models.

As we shall see, our conclusion in this paper is that when reproductive success
is determined to a significant extent by relative fitness measured on aone-on-one
basis, spite in Hamilton’s sense can evolve, despite the fact that the standard repli-
cator model, which measures relative fitness on the basis of current population
state, predicts otherwise. Thus, one should look for indiscriminate spite in situa-
tions where pairwise outcomes are influential in determining survival.

2. MODEL

We consider the following general model (Weibull, 1995; Hofbauer and Sig-
mund, 1998; Gintis, 2000). In an infinite population, pairs of individuals interact,
one random pair at a time. Each individual has associated with it one ofn pure
strategies, which we think of as representing its genotype (‘type’). At any timet ,
there is a distribution of individuals across then types{xi }, i = 1, . . . , n, where
xi ≥ 0 and

∑
i xi = 1. Denote then-dimensional vector with componentsxi by x.

Assume that when an individual of typei engages in a contest with an individual
of type j , the result has expected payoffπi j (x) to the individual of typei . Notice
that, in general, this payoff can depend on bothi and j , as well as the state of the
population,x.

Let the probability that an individual of typei interacts with another individual in
a smalltime intervaldt be proportional todt and the fraction of typei individuals
in the population. If the relative fitnessπi j (x) − π j i(x) < 0, the individual of
type i switches to typej with some probability, and vice versa. We adopt the
usual assumption that this probability is proportional to the difference in fitness
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betweeni and j . Writing the change in the statex from t to t + dt , taking the limit
in the usual way, and normalizing time, yields the differential equations

ẋi = xi

∑
j

x j (πi j (x) − π j i(x)). (1)

In the standard treatment of replicator dynamics, the expected payoff function
for i depends oni ’s relative fitness compared to an average individual, and does
not depend onj ’s identity. That is, we define

πi j (x) = πi(x) =
∑

k

xkaik , (2)

where the matrixA = [aik ] is the payoff matrix of some game that ultimately
defines the pairwise interaction of individuals. Equation (1) then becomes

ẋi = xi

∑
j

x jπi(x) − xi

∑
j

x jπ j (x) = xi (πi(x) − π̄ (x)), (3)

whereπ̄ (x) = ∑
j x jπ j (x) is the average payoff of the population as a whole.

Informally, the rate of change of the density of an evolutionary strategy is pro-
portional to the difference between its fitness and the average fitness of the entire
population. This is referred to byHofbauer and Sigmund(1998) as the ‘basic tenet
of Darwinism’.

Consider as an alternative the model where the switching probability depends,
not on the average fitness of the individuals in the particular state of the population
at timet , but rather on therelative strengths of the individuals as determined by the
game’s payoff matrixA. Survival in this situation is determined only by the pay-
offs to the two particular individuals, and, as shown below, can lead to selection of
behaviors that would be termed spiteful in the sense of Hamilton. Thus, we call
this thespiteful replicator dynamic, to distinguish it from the standard case. The
expected payoff function in equation (1) is πi j (x) = ai j , not a function of the pop-
ulation statex, and the spiteful replicator dynamic, corresponding to equation (3),
becomes

ẋi = xi

∑
j

x j (ai j − a j i). (4)

Rewriting the standard replicator dynamic, equation (3), as

ẋi = xi


∑

j

x j ai j − π̄ (x)


 , (5)

the critical difference between the two models becomes apparent. The game payoff
matrix [ai j ] is replaced by the matrix[ai j −a j i ], and the average fitness term is zero.
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To characterize situations intermediate between the standard and the spiteful
replicator dynamic, we introduce the parameter 0≤ α ≤ 1 anddefine the expected
payoff in a pairwise encounter as the convex combination

πi j (x) = (1 − α)πi(x) + αai j . (6)

Using this in equation (1), the dynamic becomes

ẋi = xi


∑

j

x j (ai j − αa j i) − (1 − α)π̄(x)


 . (7)

We can interpret this as follows. The convex combination of standard and spite-
ful dynamics has exactly the same form as the standard replicator dynamic,
equation (5), with only this difference: the original game matrix[ai j ] is replaced
by [ai j − αa j i ]. It is this modified matrix that determines equilibrium behavior in
the spiteful dynamic. We expand the definition of the spiteful replicator dynamic
to include this model wheneverα > 0.

Because the spiteful replicator dynamic can be put in the form of the stan-
dard replicator dynamic—with an appropriately modified game matrix—stability
results for standard replicator dynamics [see, for example,Björnerstedt and Weibull
(1996)] carry over without change. In particular, if a population distribution in the
spiteful replicator dynamic of equation (7) is Lyapunov stable, then it is a Nash
equilibrium of the corresponding game. Furthermore, every strict Nash equilibrium
is asymptotically stable.

Observe that the equilibrium corresponding to the modified matrix is not gene-
rally an equilibrium in the actual game. The point is that the modified game matrix
rewards behavior reducing an individuali ’s own payoff, if, by doing so, this has the
effect of harming a rivalj even more (weighted byα), since survival is determined
by ai j − αa j i . This is consistent with the notion of indiscriminate spite.

3. EXAMPLE: THE HAWK–DOVE GAME

To illustrate how spiteful replicator dynamics can lead to spiteful behavior in
equilibrium, consider the Hawk–Dove game, a simple and familiar example, but
one that illustrates all we need. FollowingMaynard Smith(1982), the matrix form
of the Hawk–Dove game is

H D
H (V − C)/2 V
D 0 V/2.

(8)

That is, in fights over a resource of valueV , Dove–Dove contests split the resource
equally, but Hawk–Hawk contests incur a costC.
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Figure 1. Discrete simulation,α = 0.0, for different starting populations of Hawks.

With the spiteful replicator dynamic, our analysis above shows that the evolution
of the population is determined by the matrix[ai j − αa j i]. Thus, we consider the
matrix where the diagonal payoff terms are multiplied by 1−α, and the off-diagonal
terms are incremented by−α times the reflected entry:

H D
H (1 − α)(V − C)/2 V
D −αV (1 − α)V/2.

(9)

WhenV ≥ C, Hawk is adominant strategy, regardless ofα. WhenV < C, the
analysis is more interesting. Forα < (C−V )/(C+V ), there is a mixed equilibrium
where the fraction of Hawk play is(V/C) · [(1 + α)/(1 − α)]. Notice that this
fraction is increasing inα; that is, increasing the marginal benefit of harming an
opponent leads to more Hawkish play. Whenα ≥ (C − V )/(C + V ), thegains
from reducing a rival’s payoff are such that Hawk is again a dominant strategy.

Figures1–4 show the results of finite-population, discrete-time simulations of
the spiteful replicator model. At each generation, the population is updated as
follows. An individual i is selected at random from the population, and that indi-
vidual engages in a contest with a randomly selected individualj . The relative
fitness� = πi j − π j i is computed according to the hybrid payoff in equation
(6). If � < 0, the type ofi is switched to the type ofj with probability −�; if
� > 0, the type ofj is switched to the type ofi with probability�. We choose the
proportionality constant so that the effective ‘probabilities’ are less than one. The
time scale is measured incontests, but is somewhat arbitrary, both because of the
proportionality constant that determines the switching, and the fact that in a real
situation, many contests can take place simultaneously.
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Figure 2. Discrete simulation,α = 0.1, for different starting populations of Hawks.
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Figure 3. Discrete simulation,α = 0.2, for different starting populations of Hawks.

The simulations show results for the casesα = 0.0, 0.1, 0.2 and 0.4, and var-
ious initial Hawk populations. The game is defined byV = 0.4 andC = 0.6,
and the population is fixed at 1000. We observe convergence to Hawk popu-
lations of 667, 815, 1000 and 1000, respectively, as predicted. The higher the
value of the spite parameterα, the more aggressive—spiteful—the predicted
behavior.
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Figure 4. Discrete simulation,α = 0.4, for different starting populations of Hawks.

As can be observed from the figures, convergence to the final value is slowest
whenα = 0.2, and faster when it is either smaller or larger than 0.2. This can be
explained by the appearance of a double root on the right-hand side of the replicator
equation for the fraction of Doves in the population. Explicitly, this differential
equation is, from equation (3),

ẋ2 = (1 − α)
C

2
x1x2

(
x1 − V

C

1 + α

1 − α

)
, (10)

wherex1 andx2 are the fractional populations of Hawks and Doves, respectively.
Whenα > 0.2, the right-hand side has a single root atx2 = 0, and near conver-
gence to the pointx2 = 0 (extinction of Doves), the differential equation forx2

becomeṡx2 ≈ cx2, wherec is a constant. This implies that at convergence,x2 =
O(e−ct). However, whenα = 0.2, the differential equation becomesẋ2 ≈ cx2

2 near
convergence to extinction of Doves, andx2 = O(1/t). Whenα < 0.2, the right-
hand side has a single root atx1 = (V/C) · [(1+α)/(1−α)] < 1, and convergence
is once again exponential. This explains the much slower convergence observed at
(and near) the caseα = 0.2.

In a biological context, it seems likely that the effect of the spiteful measure
(where fitness is based on the pairwise contest) will be mediated by the standard
measure (where fitness is based on the entire population). Thus, in real situations,
α is likely to be small. In this case, the equilibrium fraction of Hawk play is
(V/C) · [(1 + α)/(1− α)] ≈ (V/C)(1+ 2α), showing that the marginal effect of
spiteful behavior on equilibrium behavior is linear inα for smallα.
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4. EXAMPLE CONTINUED: INVASION OF SPITEFUL MUTANTS

The crux of the matter is whether we have satisfied the definition of spite. Con-
tinuing with the Hawk–Dove example, consider the Hawk–Dove game withV = 1
andC = 2, in the pure spite case,α = 1. The actual game matrix is

H D
H −1/2 1
D 0 1/2.

(11)

Using the standard replicator dynamic, behavior is predicted to converge to an
evolutionarily stable 50/50 mixture of Hawks and Doves. To see this directly,
consider a large population with a fractionρ of Hawks (H ’s) and(1−ρ) of Doves
(D’s). The averagepayoff to anH is ρ(−1/2) + (1 − ρ)(1), and to aD, ρ(0) +
(1 − ρ)(1/2). Thus, the standard model predicts that a deviation fromD to H is
profitable if and only if the payoff in the first case is greater than in the second,
or whenρ < 1/2. Any invasion ofH ’s will be halted exactly when the 50/50
equilibrium is attained, and beyond that point, invasion of anH is an unprofitable
deviation.

Consider, in contrast, the predictions of the spiteful replicator dynamic. When
an H plays anH , nothing happens, but when anH plays aD, it can replace it,
becauseai j − a j i = 1. Thus, theH ’s will eventually drive out all theD’s.

Notice that beyond the 50% point the invading mutantH ’s harm themselves
using average payoff as the criterion in the given population state (we saw above
that beyond that point their invasion is an unprofitable deviation), but their total
invasion is made possible because they harm incumbentD’s morethan themselves
in individual contests.H types donot have the highest absolute fitness, yet they
come to dominate the population.

5. DISCUSSION

It may seem paradoxical that a rare, spiteful mutant can invade a very large
population of individuals that are fitter in an absolute sense. After all, a mutant
can cause harm to only an infinitesimal fraction of the population. The point is
that the mutant can be successful if pairwise conflicts are sufficiently important
in determining reproductive success. Our spiteful replicator dynamic captures this
by including competition between individuals on the basis of one-on-one fitness.
The extent of this effect defines our spectrum from standard to spiteful replicator
equations.

We should also point out thatMaynard Smith’s (1982) ‘playing the field’, is not
at all what we are discussing. He is dealing with the situation when the payoffs are
possibly nonlinear functions of the population state. More recent work certainly
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uses pairwise models (in fact our starting point), but always (to our knowledge)
winds up using expected payoff against the population state in the replicator equa-
tions, with the result that the actual equilibria are unchanged from the original
evolutionarily stable equilibria. Thus, it is the fact that, in our model, replacement
is determined by the payoffs from the pairwise interactions, independent of the
population state, that results in the key differences in the predictions of our model
relative to the extant literature.

The general form of our spiteful replicator dynamic is not at all new or compli-
cated; it falls under the rubric of ‘imitation dynamics’ [see, for example,Hofbauer
and Sigmund(1998)], and is used to model learning by example. The crucial differ-
ence is our retention, in the relative fitness terms, of the dependence on the identity
of the opponent.

To summarize, we haveshown that spite, precisely in the sense proposed by
Hamilton, can evolve under our model of specific pairwise conflict. We hope that
this will at the least suggest where spite is most likely to be found in animals, if it
exists, and provide an improved basis for understanding spiteful human behavior
in game settings.
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