
1

1

Crawling the Web

2

Web Crawling

Retrieve (for indexing, storage, …) Web
pages by using the links found on a
page to locate more pages.

Must have some starting point

3

Type of crawl

• Web crawl versus
crawl of more limited network – web
– cs.princeton.edu
– internal co. network

• complete crawl versus
focused crawl by some criteria
– pages on one topic

• Type of crawl will affect necessity/usability of
various techniques

4

Main Issues I
• starting set of pages?
• can visit whole of Web (or web)?
• how determine order to visit links?

– graph model:
 breadth first vs depth first

• what are pros and cons of each?
• “black holes”

– other aspects /considerations
• how deep want to go?
• associate priority with links

5

• Breadth-first:

• Depth-first:

1st

6

Main Issues II

• Web is dynamic
– time to crawl “once”
– how mix crawl and re-crawl

• priority of pages

• Social behavior
– robot exclusion protocol
– not flood servers

2

7

Technical issues
• maintain one or more queues of URLs to be

visited
– order of URLs in queues?

• FIFO = breadth first
• LIFO = depth first
• priority queues

• bottleneck: resolve hostname in URLs to get
actual IP addresses – Domain Name Service
servers (DNS lookup)

• To do large crawls must have multiple
crawlers with multiple network connections
(sockets) open and probably multiple queues

8

DNS lookup

• don’t want temporal locality of reference
– be nice to servers (or else)

• cache DNS map
– large, local, in memory
– hold most recently used mappings

• prefetch DNS resolution for URLs on page
when it parsed
– put in cache
– use when URL gets to head of queue
– resolution stale?

• How “large” ?
– Problems?

9

Duplicate URL removal

Has URL been visited already?
• Use:

– canonical, fully specified URLs
– canonical hostname provided by DNS

• Visited? hash table
– hash canonical URL to entry

• Visited? table may be too large for MM

10

Caching Visited? table

• not temporal but “spatial” locality:
– most popular URLs
– most popular sites

• some temporal locality within

• to exploit site-level locality need hash that
brings pages on same site together:

– two-level hash:
• hash hostname and port
• hash path

• can use B+ tree, sorted on i then ii
– if no entry for URL in tree, not visited

11

(Near) Duplicate page removal

Has page been indexed already?
• mirror sites – different URLs, same page

– bad: duplicate page in search results
– worse?: add links from duplicate pages to queues

• also mirrors?
– mirrored pages my have slight differences

• e.g. indicate which mirror they on
• other sources duplicates & near duplicates
• table of fingerprints or sketches of pages

– fit in main memory?
– if not, costs disk access per page crawler retrieves

• cache? 12

When apply duplicate removal?

• while crawling versus for search results
– crawling larger problem
– search results demand faster results

• duplicates versus near duplicates
– same policy?

3

13

Good and bad behavior

• Crawler not flood servers
– queue for each server of near-term visits

• Crawler check robot exclusion for each server

• Sites may be badly behaved
– dynamically generated pages to create:

• infinitely many pages
• infinitely deep paths

• Need strategies to detect/avoid bad behavior
by sites

14

Re-crawling

• When re-crawl what pages?
– finish crawl and start over

• finish = have enough?
– re-crawl high priority pages in middle of

crawl
– how determine priority?

• How integrate re-crawl of high priority
pages?
– One choice – separate cycle for crawl of

high priority pages

15

Crawling large number pages

• indexing is not dynamic and continuous
– Index all pages collected at certain time

(end of crawl?)
– Provide search half of engine with new

index
• crawling is continuous

– start over
• in some sense

