
1

1

Refining searches

2

Refine initially: query
• Commonly, query expansion

– add synonyms
• Improve recall
• Hurt precision?
• Sometimes done automatically

– Modify based on prior searches
• Not automatic
• All prior searches
 vs
• your prior searches
• Example: Yahoo

– Google does too

3

Refining after search
• Use user feedback
 or
• Approximate feedback with first results

– Pseudo-feedback
– Example: “Yahoo assist”

• change ranking of current results
 or
• search again with modified query

4

Explicit user feedback
• User must participate

• User marks (some) relevant results
 or
• User changes order of results

– Pros and cons?

5

Explicit user feedback
• User must participate

• User marks (some) relevant results
 or
• User changes order of results

– Can be more nuanced than relevant or not
– Can be less accurate than relevant or not

• Example: User moves 10th item to first
– says 10th better than first 9
– Does not say which, if any, of first 9 relevant

6

User feedback in
classic vector model

• User marks top p documents for
relevance

p = 10 to 20 “typical”

• Construct new weights for terms in
query vector
– Modifies query
– Could use just on initial results to re-rank

2

7

Deriving new query
for vector model

For collection C of n doc.s
• Let Cr denote set all relevant docs in collection,

Perfect knowledge Goal:
Vector qopt =
1/|Cr| * (sum of all vectors dj in Cr) -
1/(n- |Cr|) * (sum of all vectors dk not in Cr)
 centroids

8

Deriving new query for vector model:
Rocchio algorithm

Give query q and relevance judgments for a
subset of retrieved docs

• Let Dr denote set of docs judged relevant
• Let Dnr denote set of docs judged not relevant

Modified query:
Vector qnew = αq +
β/|Dr| * (sum of all vectors dj in Dr) -
γ/(|Dnr|) * (sum of all vectors dk in Dnr)

For tunable weights α, β, γ

9

Remarks on new query
• α: importance original query
• β: importance effect of terms in relevant docs
• γ: importance effect of terms in docs not relevant

• Usually terms of docs not relevant are least important
– Reasonable values α=1, β=.75, γ=.15

• Reweighting terms leads to long queries
– Many more non-zero elements in query vector qnew
– Can reweight only most important (frequent?) terms

• Most useful to improve recall
• Users don’t like: work + wait for new results

10

Simple example
user feedback in vector model

• q = (1,1,0,0)
• Relevant: d1 = (1,0,1,1)
 d2 = (1,1,1,1)
• Not relevant: d3=(0,1,1,0)
• α, β, γ = 1
• qnew = (1,1,0,0) + (1, 1/2, 1, 1) - (0,1,1,0)
 = (2, 1/2, 0, 1)
Term weights change New term
Observe: Can get negative weights

11

Re-ranking

• Example - status?
– Google experiment: only affects repeat of same

search
– learned in class is now SearchWiki feature for

Google accounts
• Algorithms usually based on machine

learning
– Learn ranking function that best matches partial

ranking given

12

Comparing rankings
Kendall Tau measure compares two orderings of

the same set of n objects:
– Let A = # pairs whose orders agree in the two

orderings
– Let Ι = # pairs whose orders disagree in the two

ordering = # inversions

Kendall’s Tau (order1, order2)
= (A- Ι)/(A+ Ι) Ordinal correlation

= 1 – since A+Ι = 1/2(n)(n-1)
Ι

(¼(n)(n-1))

3

13

Implicit user feedback

• Click-throughs
– Use as relevance judgment
– Use as reranking:

When click result, moves it ahead of all results
didn’t click that come before it

– Problems?
• Better?

14

Single user feedback vs group

• Compare Recommender Systems
– Items
– Users
– Recommend Items to Users

• Recommend new items based on similarity to
items that:
– User liked in past: Content-based
– Liked by other users similar to this user:

Collaborative Filtering
• just “liked by other users” - easier case

• Documents matching search = items?

15

Recommender System attributes

• Need explicit or implicit ratings by user
– Purchase is 0/1 rating

• Movie tickets
• Books

• Have focused category
– examples: music, courses, restaurants
– hard to cross categories with content-based
– easier to cross categories with collaborative-based

• users share tastes across categories?

16

Content-based recommendation

• Items must have characteristics
• user values item

⇒ values characteristics of item
• model each item as vector of weights of

characteristics
– much like vector-based IR

• user can give explicit preferences for
certain characteristics

17

Content-based example
• user bought book 1 and book 2

– what if actually rated?
• Average books bought = (0, 1, 0.5, 0)
• Score new books

– dot product gives: score(A) = 0.5; score (B)= 1
• decide threshhold for recommendation

0

1

0

0

1st person

.201new book B

00.5new book A

001book 2

011book 1

sci-fimysteryromance

18

Example with explicit user preferences
How use scores of books bought?

Try: preference vector p where component k =
user pref for characteristic k if ≠ 0
avg. comp. k of books bought when user pref =0

 0 pref for user = “don’t care”

p=(0, 1, 0.5, -5)
New scores?

p•A = 0.5
p•B = 0

-5010user pref

0

1

0

0

1st per

.201new B

00.5new A

001book 2

011book 1

sci-fimysrom

4

19

Content-based: issues
• Vector-based one alternative
• Major alternatives based on machine-learning
• For vector based

– how build a preference vector
• how combined vectors for items rated by user

– our example only 0/1 rating
• how include explicit user preferences

– what metric use for similarity between new items
and preference vector

– normalization
– threshold?

20

Limitations of Content-based

• Can only recommend items similar to
those user rated highly

• New users
– Insufficient number of rated items

• Only consider features explicitly
associated with items
– Do not include attributes of user

21

Collaborative Filtering
• Recommend new items liked by other

users similar to this user
• need items already rated by user and

other users
• don’t need characteristics of items

– each rating by individual user becomes
characteristic

• Can combine with item characterisitics
– hybrid content/collaborative

22

Method types
 (see Adomavicius and Tuzhilin paper)

• Memory-Based
– Similar to vector model
– Use (user × item) matrix
– Use similarity function
– Prediction based on previously rated items

• Model-Based
– Machine-learning methods
– Model of probabilities of (users × items)

23

Memory-Based: Preliminaries

• Notation
– r(u,i) = rating of ith item by user u
– I u = set of items rated by user u
– Iu,v = set of items rated by both users u and v
– Ui,j = set of users that rated items i and j

• Adjust scales for user differences
– Use average rating by user u:
 ru

avg = (1/|Iu|) * ∑ r(u,i)

– Adjusted ratings: radj(u,i) = r(u,i) - ru
avg

i in Iu

24

One Memory-Based method:
User Similarities

• similarity between users u and v
– Pearson correlation coefficient

 ∑ (radj(u,i)*radj(v, i))
 i in Iu,v

sim(u,v) =
 (∑(radj(u,i))2 * ∑(radj(v, i))2)½
 i in Iu,v i in Iu,v

5

25

One Memory-Based Method:
Item Similarities

• similarity between items i and j
– vector of ratings of users in Ui,j
– cosine measure using adjusted ratings

 ∑ (radj(u,i)*radj(u, j))
 u in Ui,j

sim(i,j) =
 (∑ (radj(u,i))2 ∑(radj(u, j))2)½
 u in Ui,j u in Ui,j

26

Predicting User’s rating of new item:
User-based

For item i not rated by user u

 ∑ (sim(u,v)*radj(v, i))
 v in S

rpred(u,i) = ru
avg +

 ∑ |sim(u,v)|
 v in S

S can be all users or just users most similar to u

27

Predicting User’s rating of new item:
Item-based

For item i not rated by user u

 ∑ (sim(i,j)*r(u, j))
 j in T
ritem-pred(u,i) =
 ∑ |sim(i,j)|
 j in T

T can be all items or just items most similar to i

 Prediction uses only u’s ratings, but similarity
uses other users’ ratings

28

Collaborative filtering example
user
ratings

adj.
user
ratings

4
3

x

5

book 1

?20user 4
2x1user 3

525user 2

021user 1

book 4book 3book 2

2

1

x

3

book 1

?0-2user 4

0x-1user 3

1-21user 2

-20-1user 1

book 4book 3book 2

29

Collaborative filtering example

• sim(u1,u4) = (6+2)/(10*8)1/2 = .894
• sim(u2,u4) = (-2)/(5*4)1/2 = -.447
• sim(u3,u4) = (2+2)/(2*8)1/2 = 1

• predict r(u4, book4) = 2 +

 = 2 - .955 ≈ 1

(-2)*.894 +1*(-.447) + 0*1
.894 + .447 + 1

30

Limitations

• May not have enough ratings for new
users

• New items may not be rated by enough
users

• Need “critical mass” of users
– All similarities based on user ratings

6

31

Recommendation techiques
and search

Content-based ⇔ query refinement
 with user feedback

item ⇔ document
characteristic ⇔ term
user preferences ⇔ initial query
user rating of ⇔ relevance ratings for
previous items initial results

32

Recommendation techiques
and search: Collaborative filtering

• analogy with product recommendation?
 users behavior on same search - i.e. same query

– item ⇔ search result
– rating ⇔ clicked/not clicked on
– predict whether user will click on based on behavior

of similar users
– user similarity based on what have both clicked on

for this search

• more general predictions of best results
based on notions of user similarity
– hybrid content and collaboration

