Refining searches

Refine initially: query

» Commonly, query expansion

— add synonyms

 Improve recall

* Hurt precision?

+ Sometimes done automatically
— Modify based on prior searches

* Not automatic

« All prior searches

Vs
* your prior searches
« Example: Yahoo
— Google does too

Refining after search

» Use user feedback
or

» Approximate feedback with first results
— Pseudo-feedback
— Example: “Yahoo assist”

» change ranking of current results
or
» search again with modified query

Explicit user feedback

* User must participate

* User marks (some) relevant results
or

 User changes order of results
— Pros and cons?

Explicit user feedback

» User must participate

» User marks (some) relevant results
or
» User changes order of results
— Can be more nuanced than relevant or not

— Can be less accurate than relevant or not
« Example: User moves 10th item to first
— says 10th better than first 9
— Does not say which, if any, of first 9 relevant

User feedback in
classic vector model

» User marks top p documents for
relevance
p =10 to 20 “typical”
* Construct new weights for terms in
query vector
— Modifies query
— Could use just on initial results to re-rank

Deriving new query
for vector model

For collection C of n doc.s
» Let C,denote set all relevant docs in collection,

Perfect knowledge Goal:

Vector g, =

1/|C,| * (sum of all vectors d; in C,) -

1/(n- |C,|) * (sum of all vectors d, not in C,)
centroids

Deriving new query for vector model:
Rocchio algorithm

Give query g and relevance judgments for a
subset of retrieved docs

+ Let D, denote set of docs judged relevant

» Let D, denote set of docs judged not relevant

Modified query:

Vector q,,y = 0 +

B/ID,| * (sum of all vectors d; in D,) -
Y/(ID,,|) * (sum of all vectors d, in D)

For tunable weights a, f, ¥

Remarks on new query

* a: importance original query
» B: importance effect of terms in relevant docs
« y:importance effect of terms in docs not relevant

» Usually terms of docs not relevant are least important
— Reasonable values a=1, p=.75, y=.15

* Reweighting terms leads to long queries
— Many more non-zero elements in query vector q,,,
— Can reweight only most important (frequent?) terms

* Most useful to improve recall

» Users don't like: work + wait for new results

Simple example
user feedback in vector model

* q=(1,1,0,0)
* Relevant: d1=(1,0,1,1)
d2 = (1,1,1,1)
* Not relevant: d3=(0,1,1,0)
e, B, y=1
© Gpew = (1,1,0,0) + (1, 1/2, 1, 1) - (0,1,1,0)
=(2,1/2,0,1)
Term weights change New term

Observe: Can get negative weights

Re-ranking
* Example -
— Google experiment: only affects repeat of same
search

v
— learned in class is now SearchWiki feature for
Google accounts
» Algorithms usually based on machine
learning

— Learn ranking function that best matches partial
ranking given

Comparing rankings

Kendall Tau measure compares two orderings of
the same set of n objects:

— Let A = # pairs whose orders agree in the two
orderings

— Let I = # pairs whose orders disagree in the two
ordering = # inversions

Kendall's Tau (order1, order2)
= (A-T)/(A+ 1) Ordinal correlation
I . _
=1- W since A+I = 1/2(n)(n-1)

12

Implicit user feedback

Click-throughs
— Use as relevance judgment

— Use as reranking:

When click result, moves it ahead of all results
didn’t click that come before it

— Problems?
» Better?

Single user feedback vs group

» Compare Recommender Systems

— Items
— Users
— Recommend Items to Users

» Recommend new items based on similarity to

items that:
— User liked in past: Content-based

— Liked by other users similar to this user:
Collaborative Filtering

« just “liked by other users” - easier case

» Documents matching search = items?

Recommender System attributes

» Need explicit or implicit ratings by user
— Purchase is 0/1 rating
* Movie tickets
* Books
» Have focused category
— examples: music, courses, restaurants
— hard to cross categories with content-based
— easier to cross categories with collaborative-based
« users share tastes across categories?

Content-based recommendation

Items must have characteristics
user values item
= values characteristics of item

model each item as vector of weights of
characteristics
— much like vector-based IR

user can give explicit preferences for
certain characteristics

Content-based example

« user bought book 1 and book 2
— what if actually rated?
* Average books bought = (0, 1, 0.5, 0)
» Score new books
— dot product gives: score(A) = 0.5; score (B)=1
+ decide threshhold for recommendation

p=(0, 1, 0.5, -5)

New scores?

1stperson | romance | mystery | sci-fi
book 1 0 1 1 0
book 2 0 1 0 0
new book A 1 i5 0 0
new book B 0 1 0 2 17

Example with explicit user preferences

How use scores of books bought?

Try: preference vector p where component k =
user pref for characteristic k if # 0
avg. comp. k of books bought when user pref =0
0 pref for user = “don’t care”

1stper | rom | mys | sci-fi

user pref 0 1 0 -5

p*A=05 book 1 0 1 1 0

p*B=0 book 2 0 1 0 0
new A 1 5 0 0
new B 0 1 0 218

Content-based: issues

» Vector-based one alternative
» Major alternatives based on machine-learning
» For vector based
— how build a preference vector
* how combined vectors for items rated by user
—our example only 0/1 rating
» how include explicit user preferences

— what metric use for similarity between new items
and preference vector

— normalization
— threshold?

Limitations of Content-based

+ Can only recommend items similar to
those user rated highly

* New users
— Insufficient number of rated items

* Only consider features explicitly
associated with items
— Do not include attributes of user

20

Collaborative Filtering

+ Recommend new items liked by other
users similar to this user

* need items already rated by user and
other users

» don’t need characteristics of items

— each rating by individual user becomes
characteristic

» Can combine with item characterisitics
— hybrid content/collaborative

21

Method types

(see Adomavicius and Tuzhilin paper)

* Memory-Based

— Similar to vector model

— Use (user x item) matrix

— Use similarity function

— Prediction based on previously rated items
» Model-Based

— Machine-learning methods

— Model of probabilities of (users x items)

22

Memory-Based: Preliminaries

+ Notation
— 1(u,i) = rating of ith item by user u
— I, = set of items rated by user u
— I, = set of items rated by both users u and v
- U
* Adjust scales for user differences
— Use average rating by user u:
r,ve = (1/]L]) *i% r(u,i)

— Adjusted ratings: r,4;(u,i) = r(u,i) -,

= set of users that rated items i and j

23

One Memory-Based method:
User Similarities

* similarity between users u and v
— Pearson correlation coefficient

(W) 1y (v, 1))

iinl,,

sim(u,v) =

(Z(rygi(wD)* * Z(ryg(v, D)*)*

iinl,, iinl,,

24

One Memory-Based Method:
Item Similarities

* similarity between items i and j
— vector of ratings of users in U, ;
— cosine measure using adjusted ratings

z (g (W,1) 15w, J))

uin U

sim(i.j) =
(b2 (radj(u’i))z z (radj(us J))Z)I/z
uin U uin U

25

Predicting User’s rating of new item:
User-based

For item i not rated by user u

2 (Sim(u,v)*1,qi(V, 1))
vin$

rpred(u’i) = ruavg 4L
2 [sim(u,v)|
vin$S

S can be all users or just users most similar to u

26

Predicting User’s rating of new item:
Item-based

For item i not rated by user u

> (sim(i,j)*r(u, j))
jinT

rilem-pred(u 1) =
5
2 [sim(i,))|
jinT

T can be all items or just items most similar to i

» Prediction uses only u’s ratings, but similarity

uses other users’ ratings
27

Collaborative filtering example

user book 1 book 2 | book 3 | book 4

ratings| user 1 5 1 2 0
user 2 X 5 2 5
user 3 3 1 X 2
user 4 0 2 ?

book 1 book 2 | book 3 |book 4

Collaborative filtering example

« sim(u1,ud) = (6+2)/(10*8)"2 = .894
o sim(u2,ud) = (-2)/(5*4)"2 = -.447
+ sim(u3,u4) = (2+2)/(2*8)"2 = 1

(-2)*.894 +1*(-.447) + 0*1

+ predict r(u4, book4) =2+
.894 + 447 +1

=2-.955 =~ 1

29

adj. user 1 3 -1 0 -2
user
. user 2 X 1 -2 1
ratings
user 3 1 -1 X 0
user 4 2 -2 0
Limitations

+ May not have enough ratings for new
users

* New items may not be rated by enough
users

* Need “critical mass” of users
— All similarities based on user ratings

30

Recommendation techiques
and search

Content-based <« query refinement
with user feedback

item < document
characteristic < term

user preferences « initial query

user rating of < relevance ratings for
previous items initial results

31

Recommendation techiques
and search: Collaborative filtering

+ analogy with product recommendation?
users behavior on same search - i.e. same query
— item <> search result
— rating < clicked/not clicked on

— predict whether user will click on based on behavior
of similar users

— user similarity based on what have both clicked on
for this search
* more general predictions of best results
based on notions of user similarity
— hybrid content and collaboration

32

