

Refining after search · Use user feedback or

- Approximate feedback with first results - Pseudo-feedback
 - Example: "Yahoo assist"
- · change ranking of current results or
- · search again with modified query

Explicit user feedback

- User must participate
- · User marks (some) relevant results or
- · User changes order of results - Pros and cons?

Explicit user feedback

- · User must participate
- · User marks (some) relevant results or
- · User changes order of results
 - Can be more nuanced than relevant or not
 - Can be less accurate than relevant or not
 - · Example: User moves 10th item to first – says 10th better than first 9
 – Does not say which, if any, of first 9 relevant

classic vector model

User feedback in

- · User marks top p documents for relevance p = 10 to 20 "typical"
- · Construct new weights for terms in query vector
 - Modifies query
 - Could use just on initial results to re-rank

Deriving new query for vector model

For collection C of n doc.s

· Let C_r denote set all relevant docs in collection,

Perfect knowledge Goal:

Vector $\mathbf{q}_{opt} =$ 1/|C_r| * (sum of all vectors d_j in C_r) -1/(n- |C_r|) * (sum of all vectors d_k not in C_r) centroids

Deriving new query for vector model: Rocchio algorithm

Give query **q** and relevance judgments for a subset of retrieved docs

- Let D_r denote set of docs judged relevant
- + Let D_{nr} denote set of docs judged not relevant

 $\begin{array}{l} \mbox{Modified query:} \\ \mbox{Vector } {\bm q}_{new} = \ \alpha {\bm q} + \\ \beta / |D_r| * (sum of all vectors \, {\bm d}_j \mbox{ in } D_r) - \\ \gamma / (|D_nr|) * (sum of all vectors \, {\bm d}_k \mbox{ in } D_{nr}) \end{array}$

For tunable weights $\alpha,\,\beta,\,\gamma$

Remarks on new query

- α: importance original query
- β : importance effect of terms in relevant docs
- $\boldsymbol{\gamma}$: importance effect of terms in docs not relevant
- Usually terms of docs not relevant are least important

 Reasonable values α=1, β=.75, γ=.15
- Reweighting terms leads to long queries

 Many more non-zero elements in query vector q_{new}
- Can reweight only most important (frequent?) terms
 Most useful to improve recall
- · Users don't like: work + wait for new results

- Example status?
 - Google experiment: only affects repeat of same search
 - learned in class is now SearchWiki feature for Google accounts
- Algorithms usually based on machine learning
 - Learn ranking function that best matches partial ranking given

11

Implicit user feedback

- Click-throughs
 - Use as relevance judgment
 - Use as reranking: When click result, moves it ahead of all results didn't click that come before it
 Problems?
- Better?

Single user feedback vs group

- · Compare Recommender Systems
 - Items
 - Users
 - Recommend Items to Users
- Recommend new items based on similarity to items that:
 - User liked in past: Content-based
 - Liked by other users similar to this user: Collaborative Filtering
 - just "liked by other users" easier case
- Documents matching search = items?

Recommender System attributes

- · Need explicit or implicit ratings by user
 - Purchase is 0/1 rating
 - Movie tickets
 - Books
- Have focused category
 - examples: music, courses, restaurants
 - hard to cross categories with content-based
 - easier to cross categories with collaborative-based
 - users share tastes across categories?

15

13

Content-based recommendation

- Items must have characteristics
- user values item
 ⇒ values characteristics of item
- model each item as vector of weights of characteristics
 - much like vector-based IR
- user can give explicit preferences for certain characteristics

16

14

Content-based example

- user bought book 1 and book 2
 - what if actually rated?
- Average books bought = (0, 1, 0.5, 0)
- Score new books
- dot product gives: score(A) = 0.5; score (B)= 1
 decide threshold for recommendation

	1 st person	romance	mystery	sci-fi
book 1	0	1	1	0
book 2	0	1	0	0
new book A	1	.5	0	0
new book B	0	1	0	.2 17

Content-based: issues

- · Vector-based one alternative
- · Major alternatives based on machine-learning
- For vector based
 - how build a preference vector
 - how combined vectors for items rated by user – our example only 0/1 rating
 - how include explicit user preferences
 - what metric use for similarity between new items
 - and preference vector
 - normalization
 - threshold?

Limitations of Content-based

- Can only recommend items similar to those user rated highly
- · New users
- Insufficient number of rated items
- Only consider features explicitly associated with items
 - Do not include attributes of user

Collaborative Filtering

- Recommend new items liked by other users similar to this user
- need items already rated by user and other users
- · don't need characteristics of items
- each rating by individual user becomes characteristic
- Can combine with item characterisitics
 hybrid content/collaborative

21

19

Method types

(see Adomavicius and Tuzhilin paper)

- Memory-Based
 - Similar to vector model
 - Use (user × item) matrix
 - Use similarity function
 - Prediction based on previously rated items
- Model-Based

sim(

- Machine-learning methods
- Model of probabilities of (users × items)

22

24

20

similarity between users u and v
 Pearson correlation coefficient

$$\sum_{\substack{i \text{ in } I_{uv}}} (r_{adj}(u,i) * r_{adj}(v,i))$$

$$\mathbf{u}, \mathbf{v}) = \frac{1}{(\sum_{\substack{i \text{ in } I}} (\mathbf{r}_{adj}(\mathbf{u}, i))^2 * \sum_{\substack{i \text{ in } I}} (\mathbf{r}_{adj}(\mathbf{v}, i))^2)^{\frac{1}{2}}}$$

Collaborative filtering example							
user		book 1	book 2	book 3	book 4		
ratings	user 1	5	1	2	0		
	user 2	x	5	2	5		
	user 3	3	1	x	2		
	user 4	4	0	2	?		
adj. user ratings -		book 1	book 2	book 3	book 4		
	user 1	3	-1	0	-2		
	user 2	x	1	-2	1		
	user 3	1	-1	x	0		
	user 4	2	-2	0	?		

Recommendation techiques and search						
Content-based	⇔	query refinement with user feedback				
item characteristic user preferences user rating of previous items	0 0 0 0	document term initial query relevance ratings for initial results				
		31				

Recommendation techiques and search: Collaborative filtering

- analogy with product recommendation?
- users behavior on same search i.e. same query – item ⇔ search result
 - rating ⇔ clicked/not clicked on
 - predict whether user will click on based on behavior of similar users
- user similarity based on what have both clicked on for *this* search

32

- more general predictions of best results based on notions of user similarity
 - hybrid content and collaboration