Social Networks and Ranking

Social Networks

- · Represent relationship between entities
 - paper cites paper
 - html page links to html page
 - A supervises B

directed graph

- A and B are friends
- papers share an author
- A and B are co-workers

undirected graph

2

Hypertext

- document or part of document links to other parts or other documents
 - construct documents of interrelated pieces
 - relate documents to each other
- · pre-dates Web
- · Web "killer app."

3

How use links to improve information search?

- use structure to compute score
- · include more objects to score
- can deal with objects of mixed types

 images, PDF, ...

1

Scoring using structure

- Ideas
 - 1. link to object suggests it valuable object
 - distance between objects in graph represents degree of relatedness reachable by all in 2 links

5

Pursuing linking and value

- Intuition: when Web page points to another Web page, it confers status/authority/popularity to that page
- Find a measure that captures intuition
- Not just web linking
 - Citations in books, articles
 - Doctors referring to other doctors

6

Indegree

- Indegree = number of links into a node
- · Most obvious idea:

higher indegree => better node

- Doesn't work well
- · Need some feedback in system
- · Leads us to Page and Brin's PageRank

7

PageRank

- · Algorithm that gave Google the leap in quality
- Used link structure between pages in fundamental way to score pages
 - link structure centerpiece of scoring
- published

Page, Larry and Sergey Brin, R. Motwani, T. Winograd, The PageRank Citation Ranking: Bringing Order to the Web, Stanford Digital Library Technologies Project TR, Jan. 1998.

В

PageRank framework

- Given a directed graph with *n* nodes
- Assign each node a score that represents its importance in structure
 - Call score PageRank: pr(node)

9

Conferring importance

Core ideas:

- A node should confer some of its importance to the nodes to which it points
 - If a node is important, the nodes it links to should be important
- A node should not transfer more importance than it has

10

Attempt 1

Refer to nodes by numbers 1, ..., n (arbitrary numbering) Let t_i denote the number of edges out of $node\ i$ (outdegree) Node i transfers $1/t_i$ of its importance on each edge out of it

4 1/3pr(1) 1/3pr

Define

 $pr_{new}(k) = \sum_{i \text{ with edge from } i \text{ to } k} (pr(i) / t_i)$ Iterate until converges

Problems

- Sinks (nodes with no edges out)
- · Cyclic behavior

11

1/2pr(2)

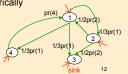
Attempt 2

Random walk model

- Attempt 1 gives movement from node to linked neighbor with probability 1/outdegree
- · Add random jump to any node

 $pr_{new}(k) = \alpha/n + (1-\alpha)\sum_{i \text{ with edge from } i \text{ to } k} (pr(i) / t_i)$

- $-\alpha$ parameter chosen empirically
- Break cycles
- · Escape from sinks



Normalized?

- Would like $\sum_{1 \le k \le n} (pr(k)) = 1$
- Consider $\sum_{1 \le k \le n} (pr_{new}(k))$
 - = $\sum_{1 \le k \le n} (\alpha/n + (1-\alpha)\sum_{i \text{ with edge from } i \text{ to } k} (pr(i) / t_i))$
 - = $\sum_{1 \le k \le n} (\alpha/n) + \sum_{1 \le k \le n} ((1-\alpha)\sum_{i \text{ with edge from } i \text{ to } k} (pr(i) / t_i))^*$
 - + $(1-\alpha)\sum_{1 \le k \le n} \sum_{i \text{ with edge from } i \text{ to } k} (pr(i) / t_i)$
 - + $(1-\alpha)\sum_{1 \le i \le n} \sum_{k \text{ with edge from i to } k} (pr(i) / t_i) *$
 - + $(1-\alpha)\sum_{i \text{ with edge from } i} pr(i)$

*inner sum Σ_i over incoming edges for one k

*inner $sum \Sigma_k$ over outgoing edges for one i

Problem for desired normalization

$$\sum_{1 \le k \le n} (pr_{new}(k)) = \alpha + (1-\alpha) \sum_{i \text{ with edge from } i} pr(i)$$

- Missing pr(i) for nodes with no edges from them - sinks!
- · Solution: add n edges out of every sink
 - Edge to every node including self
 - Gives 1/n contribution to every node

Gives desired normalization:

If $\sum_{1 \le k \le n} (pr_{initial}(k)) = 1$

then $\sum_{1 \le k \le n} (pr(k)) = 1$

Matrix formulation

- · Let E be the n by n adjacency matrix
 - E(i,k) = 1 if there is an edge from node i to node k = 0 otherwise
- · Define new matrix L:

For each row i of E $(1 \le i \le n)$

If row i contains $t_i > 0$ ones, $L(i,k)=(1/t_i) E(i,k)$, $1 \le k \le n$ If row i contains 0 ones, L(i,k) = 1/n, $1 \le k \le n$

- · Vector pr of PageRank values defined by
 - $pr = (\alpha/n, \alpha/n, \dots \alpha/n)^T + (1-\alpha) L^T pr$
- · has a solution representing the steady-state values pr(k)

Calculation

- Choose α
 - No single best value
 - Page and Brin originally used α =.15
- · Simple iterative calculation
 - Initialize $pr_{initial}(k) = 1/n$ for each node k so $\sum_{1 \le k \le n} (pr_{initial}(k)) = 1$ _
 - $-\operatorname{pr}_{\text{new}}(k) = \alpha/n + (1-\alpha)\sum_{1 \le i \le n} L(i,k)\operatorname{pr}(i)$
- Converges

 - Has necessary mathematical properties
 In practice, choose convergence criterion
 - · Stops iteration

PageRank Observations

- · Can be calculated for any directed graph
- · Google calculates on entire Web graph - query independent scoring
- · Huge calculation for Web graph
 - precomputed
 - 1998 Google published:
 - 52 iterations for 322 million links
 - · 45 iterations for 161 million links
- · PageRank must be combined with querybased scoring for final ranking
 - Many variations
 - What Google exactly does secret
 - Can make some guesses by results

HITS

Hyperlink Induced Topic Search

- · Second well-known algorithm
- · By Jon Kleinberg while at IBM Almaden Research Center
- Same general goal as PageRank
- · Distinguishes 2 kinds of nodes
 - Hubs: resource pages
 - · Point to many authorities
 - Authorities: good information pages
 - · Point to many hubs

Mutual reinforcement

- Authority weight node j: a(j)
 - Vector of weights a
- Hub weight node j: h(j)
 - Vector of weights h
- · Update:

$$a_{new}(k) = \sum_{i \text{ with edge from } i \text{ to } k} (h(i))$$

 $h_{\text{new}}(k) = \sum_{j \text{ with edge from } k \text{ to } j} (a(j))$

Matrix formulation

Steady state:

 $a = E^T h$ $a = E^TEa$ h = Ea $h = EE^Th$

Interpretation:

- $E^TE(i,j)$: number nodes point to both node i and node i
 - · "Co-citation"
- EET(i,j): number nodes pointed to by both node i and node j
 - "Bibliographic coupling"

20

Iterative Calculation

```
a = h = (1, ..., 1)^T
While (not converged) {
     \mathbf{a}_{\text{new}} = \mathsf{E}^{\mathsf{t}} \mathbf{h}
     h_{\text{new}} = Ea
     a = a_{\text{new}} / ||a_{\text{new}}||
                                            normalize to unit vector
                                            normalize to unit vector
     \boldsymbol{h} = \boldsymbol{h}_{\text{new}} / ||\boldsymbol{h}_{\text{new}}||
```

Provable convergence by linear algebra

Use of HITS

- Actual use of HITS by IBM people was after find Web pages satisfying query:
 - Retrieve documents satisfy query and rank by term-based techniques
 - 2. Keep top c documents: root set of nodes
 - c a chosen constant tunable
 - 3. Make base set:
 - 1. Root set
 - 2. Plus nodes pointed to by nodes of root set
- using links matches!
- 3. Plus nodes pointing to nodes of root set Make base graph: base set plus edges from Web graph between these nodes
- 5. Apply HITS to base graph

Results using HITS

- Documents ranked by authority score a(doc) and hub score h(doc)
- Authority score primary score for search results
- Heuristics:
 - delete all links between pages in same domain
 - Keep only pre-determined number of pages linking into root set (~200)
- Findings (original paper)
 - Number iterations in original tests ~50
 - most authoritative pages do not contain initial query terms
 - · Compare LSI "concepts"

Observations

- · HITS can be applied to any directed graph
- · Base graph much smaller than Web graph
- · Kleinberg identified bad phenomena
 - Topic diffusion: generalizes topic when expand root graph to base graph
 - · Want compilers generalized to programming

PageRank and HITS

- designed independently around 1997
- indicates time was ripe for this kind of analysis
- lots of embellishments by others

25